University of Waterloo CS240E, Winter 2024 Written Assignment 1

Due Date: Tuesday, January 23, 2023 at 5pm

Be sure to read the assignment guideliness (https://student.cs.uwaterloo.ca/~cs240e/ w24/assignments.phtml\#guidelines). Submit your solutions electronically to MarkUs as individual PDF files named a1q1.pdf, a1q2.pdf, ... (one per question).

Ensure you have read, signed, and submitted the Academic Integrity Declaration AID01.TXT.

Grace period: submissions made before 11:59PM on Jan. 23, will be accepted without penalty. Please note that submissions made after 11:59PM will not be graded and may only be reviewed for feedback.

Question 1 [5 marks]

There are two different definitions of 'little-omega' in the literature (to distinguish them, we will call them ω_{0} and ω_{1} here). Fix two functions $f(x), g(x)$. We say that

- $f(x) \in \omega_{0}(g(x))$ if for all $c>0$ there exists $n_{0}>0$ such that $|f(x)| \geq c|g(x)|$ for all $x \geq n_{0}$, and
- $f(x) \in \omega_{1}(g(x))$ if $g(x) \in o(f(x))$.

Show that these two definitions are equivalent, i.e., $f(x) \in \omega_{0}(g(x))$ if and only if $f(x) \in$ $\omega_{1}(g(x))$. Your proof must be from first principle, i.e., directly using the definitions (do not use the limit-rule). Note that $f(x), g(x)$ are not necessarily positive.

Question $2 \quad[3+3+3=9$ marks]

Consider the following (rather strange) code-fragment:

```
Algorithm 1: mystery (int \(n\) )
    Input: \(n \geq 2\)
    \(1 L \leftarrow\lfloor\log (\log (n))\rfloor\)
    2 print all subsets of \(\left\{1, \ldots, 2^{L}\right\}\)
```

For example, for $n=17$, we have $\log 17 \approx 4.08$ and $\log (4.08) \approx 2.02$, so $\log \log (17) \approx 2.02$ and $L=2$ (and we print the 16 subsets of $\{1, \ldots, 4\}$). This question is really asking about the run-time of mystery, but to avoid having to deal with constants, define $f(n)$ to be the number of subsets that we are printing when calling mystery with parameter n.
(a) Show that $f(n) \in O(n)$.
(b) Show that $f(n) \in \Omega(\sqrt{n})$.
(c) Prof. Conn Fused thinks that $f(n) \in \Theta\left(n^{d}\right)$ for some constant d. (By the previous two parts, necessarily $\frac{1}{2} \leq d \leq 1$.) Show that Prof. Fused is wrong, or in other words, for any $\frac{1}{2} \leq d \leq 1$ we have $f(n) \notin \Theta\left(n^{d}\right)$.

Question $3 \quad[2+3+7+2(+1+1)=14(+2)]$

We define the Fibonacci sequence $\left\{t_{n}\right\}$ by

$$
t_{n}= \begin{cases}0 & \text { if } n=0 \\ 1 & \text { if } n=1 \\ t_{n-1}+t_{n-2}, & \text { if } n \geq 2\end{cases}
$$

(a) Show that $t_{n} \geq(\sqrt{2})^{n}$ for $n \geq 8$.
(b) Find a constant $k<1$ such that $t_{n} \leq 2^{k n}$ for $n \geq 0$. Justify that the inequality holds for your choice of k.
(c) One way to compute t_{n} uses matrix exponentiation. We can express the linear system

$$
\left\{\begin{array}{l}
t_{1}=t_{1} \\
t_{2}=t_{0}+t_{1}
\end{array}\right.
$$

in matrix notation:

$$
\left[\begin{array}{l}
t_{1} \\
t_{2}
\end{array}\right]=\left[\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{c}
t_{0} \\
t_{1}
\end{array}\right]
$$

In general,

$$
\left[\begin{array}{c}
t_{n} \\
t_{n+1}
\end{array}\right]=\left[\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right]^{n} \cdot\left[\begin{array}{c}
t_{0} \\
t_{1}
\end{array}\right] .
$$

Give an algorithm \mathcal{A} to compute t_{n} that uses $O(\log n) 2 \times 2$ matrix multiplications.
(d) Argue that 4 additions and 8 multiplications (of integers) suffice to compute the product of two 2×2 matrices with integer entries (hence the runtime of your algorithm \mathcal{A} in (c) is $O(\log n)$.
(e) (Bonus) Another algorithm to compute t_{n} is

Explain why the $O(\log n)$ algorithm \mathcal{A} is likely to be slower than the $\Omega(n)$ algorithm \mathcal{B} for small values of n when implemented on an actual machine.
(f) (Bonus) Is there an easy way to improve algorithm \mathcal{B} ?

```
Algorithm 2: \(\mathcal{B}\) (int \(n\) )
    Input: \(n \geq 0\)
    if \(n=0\) then return 0
    if \(n=1\) then return 1
    create array of integers \(T[0 . . n]\)
    \(T[0] \leftarrow 0 ; T[1] \leftarrow 1\)
    for \(i \leftarrow 2\) to \(n\) do
        \(T[i] \leftarrow T[i-1]+T[i-2]\)
    return \(T[n]\)
```


Question $4 \quad[2+6+4=12$ marks $]$

To reduce the height of the heap one could use a d-way heap. This is a tree where each node contains up to d children, all except the bottommost level are completely filled, and the bottommost level is filled from the left. It also satisfies that the key at a parent is no smaller than the keys at all its children.
a) Explain how to store a d-way heap in an array A of size $O(n)$ such that the root is at $A[0]$. Also state how you find parents and children of the node stored at $A[i]$. You need not justify your answer.
b) What is the height of a d-ary heap on n nodes? Give a tight asymptotic bound that depends on d and n. You may assume that n and d are sufficiently big (e.g. $d \geq 3$ and $n \geq 10$). Note that d is not necessarily a constant.
c) Assume that $n \geq 4$ is a perfect square. What is the height of a d-ary heap for $d=\sqrt{n}$? Give an exact bound (i.e., not asymptotic).

Question 5 [9 marks]

Consider a (max-oriented) meldable heap H that holds n integers. Describe an algorithm that is given H and an integer x, and that finds all items in H for which the priority is at least x. (Note that x may or may not be in H.) Your algorithm should have $O(1+s)$ worst-case run-time, where s is the number of items that were found.

