University of Waterloo
CS240E, Winter 2024

Assignment 4
Due Date: Tuesday, March 19, 2024, at 5pm

Be sure to read the assignment guidelines (http://www.student.cs.uwaterloo.ca/
~cs240e/w24/assignments.phtml). Submit your solutions electronically as individual PDF
files named adql.pdf, adq2.pdf, ... (one per question).

Grace period: submissions made before 11:59PM on March 20, will be accepted without
penalty. Please note that submissions made after 11:59PM will not be graded and may
only be reviewed for feedback.

Question 1 [8 marks]

Our goal is to improve the space complexity of the vEB implementation from class (at the
expense of losing worst-case time guarantees). Give an adapted implementation of vEB that:

e uses O(nlogu) bits of space, and
e supports all operations in O(loglogu) expected amortized time.

Hint: the asymptotic bound on space is equivalent to storing O(n) integers that are at
most u.

Question 2 [24-544=12 marks]

One method of hashing with open addressing is to use quadratic probing. In the simplest form
of quadratic probing, the ith element of the probe sequence is h(k,4) = (h(k) + %) mod M.

a) Assume that h(k) = 0. Give the probe sequence (h(k,0),...,h(k, M—1)) for M =11
and for M = 14. No justification is needed.

b) Show that this method misses many slots of the hash table. In particular, show that
the probe sequence (h(k,0),...,h(k, M—1)) contains at most [*5-] many different
values from {0,..., M —1}.

Hint: You should notice in part (a) that many indices appear twice in the probe
sequence. Can you detect the pattern in which they repeat?

c) Argue that if M > 3 is prime and a < %, then the probe sequence always finds an
empty slot.

You are allowed to use modular arithmetic rules without proof, see Appendix B in the
textbook for details.

http://www.student.cs.uwaterloo.ca/~cs240e/w24/assignments.phtml
http://www.student.cs.uwaterloo.ca/~cs240e/w24/assignments.phtml

Question 3 [2+4(4+5)+2 = 8(+5) marks]

We have seen one method of obtaining a universal family of hash-functions in class. This
assignment discusses another one. Let us assume that all keys come from some universe
{0,...,U — 1}, where U = 2™. Therefore any key k can be viewed as bitstring xj of length
m by taking its base-2 representation.

Let us assume further that the hash-table-size M is M = 2° for some integer b, with
b < m. To choose a hash-function, we now randomly choose each entry in a b x m-matrix
H to be 0 or 1 (equally likely). Then compute hy = (Hxy)%2, where xy, is now viewed as a
vector and ‘%2’ is applied to each entry. The output is a b-dimensional vector with entries
in {0,1}; interpreting it as a length-b bitstring gives a number {0, ..., M — 1} that we use
as hash-value h(k). For example, if k = 18, m = 5, b = 3 and H is as shown below, then
h(k) = 1 since

1
01101 0 0 0
10011 0 %2=1| 2 | %2= 0
00010 1 1 1
h E . 0 H 1 as length-3 bistri
Tp as leng istring

18 as length-5 bitstring

a) Let H be the above matrix, m =5 and b = 3. Consider the keys 9 and 13. What are
their hash-values? Show your work.

b) Consider again m = 5,b = 3 and keys k = 9 and &’ = 13. Consider the same matrix H,
except that the bits in the third column are randomly chosen. What is the probability
that h(k) = h(k’)? Justify your answer.

c) (Bonus) Show that (for any m,b) this method of choosing the hash function gives a
universal hash function family, or in other words, P(h(k) = h(k')) < 5; for any two
keys k # k'

d) This method for obtaining universal hash-functions is much less popular than using the
Carter-Wegman functions. Why do you think that that might be the case? (Expected
length of answer is 1-3 sentences.)

Question 4 [2454+54+5=17 marks]

A skewed kd-tree is a kd-tree where the splits are allowed to be less even: If a node v has
n, points in its subtree, then its sibling stores at least n,/2 and at most 2n, points in its
subtree.

a) Forn =7and n =9, show a skewed kd-tree that stores n points and has the maximum
possible height among all such trees. (You need not prove that it is maximal.) You
only have to show the tree-structure; no need to show suitable points.

2

b)

Give an upper bound on the height of a skewed kd-tree that stores n points. Give an
exact bound (no asymptotics).

Also state what your bound evaluates to for n = 7,9. For full credit, your bound must
be at most one bigger than the height you achieved in part (a) for n = 7,9.

One would insert in a skewed kd-tree as follows. First insert the point where it needs
to be (by splitting at an appropriate leaf). Then check size-balances at the ancestors,
and (if needed) re-build a maximal subtree where the size-balance is violated. Consider
the following potential function:

CI)() = chog Ny - maX{Ov |nv.left - nv.right| - 1}

veV

where as before n, denotes the number of points stored in the subtree rooted at v, and
c is a constant. Show that during an insert without rebuilding, this potential function
increases by O(log®n).

You may use without proof that log(x + 1) < logz + % for x > 0.

(Motivation: With this potential function all operations have amortized run-time
O(log®n), but to keep the assignment from getting too long you do not have to show
this.)

We can do a range-search on a skewed kd-tree in exactly the same manner as for a
kd-tree. While the run-time is not as good as for a kd-tree, it is better than for quad-
trees since at least we do not visit every node. Prove this. Specifically, prove that in
a skewed kd-tree, the number of boundary nodes in any range-search is in O(n¢) for
some ¢ < 1.

Any ¢ < 1 will give you full credit, but we recommend ¢ = 0.9.

Question 5 [54+54+2=12 marks]

A range-counting-query is like a range search, except that you only need to report how many
items fall into the range, you do not need to list which items they are.

a)

b)

Describe how any balanced binary search tree can be modified such that a range
counting query can be performed in O(logn) time (independent of s, the number
of points in the query-interval). Briefly state the changes needed, then describe the
algorithm for the range counting query.

Now consider the 2-dimensional-case: Describe an appropriate range-tree based data
structure such that you can answer range-counting-queries among 2-dimensional points
in time O((logn)?). Then describe the algorithm for the range counting query.

Prof. Conn Fused thinks that they can do a similar approach for kd-trees, so report
the number of points in O(log? n) time. Why is this not correct?

3

For all questions concerning points and their data structures, the points are in general
position.

	[8 marks]
	[2+5+4=12 marks]
	[2+4(+5)+2 = 8(+5) marks]
	[2+5+5+5=17 marks]
	[5+5+2=10 marks]

