University of Waterloo
 CS240E, Winter 2024

 Assignment 4

 Assignment 4}

Due Date: Tuesday, March 19, 2024, at 5pm
Be sure to read the assignment guidelines (http://www.student.cs.uwaterloo.ca/ \sim cs240e/w24/assignments.phtml). Submit your solutions electronically as individual PDF files named a4q1.pdf, a4q2.pdf, ... (one per question).

Grace period: submissions made before 11:59PM on March 20, will be accepted without penalty. Please note that submissions made after 11:59PM will not be graded and may only be reviewed for feedback.

Question 1 [8 marks]

Our goal is to improve the space complexity of the vEB implementation from class (at the expense of losing worst-case time guarantees). Give an adapted implementation of vEB that:

- uses $O(n \log u)$ bits of space, and
- supports all operations in $O(\log \log u)$ expected amortized time.

Hint: the asymptotic bound on space is equivalent to storing $O(n)$ integers that are at most u.

Question $2 \quad[2+5+4=12$ marks]

One method of hashing with open addressing is to use quadratic probing. In the simplest form of quadratic probing, the i th element of the probe sequence is $h(k, i)=\left(h(k)+i^{2}\right) \bmod M$.
a) Assume that $h(k)=0$. Give the probe sequence $\langle h(k, 0), \ldots, h(k, M-1)\rangle$ for $M=11$ and for $M=14$. No justification is needed.
b) Show that this method misses many slots of the hash table. In particular, show that the probe sequence $\langle h(k, 0), \ldots, h(k, M-1)\rangle$ contains at most $\left\lceil\frac{M+1}{2}\right\rceil$ many different values from $\{0, \ldots, M-1\}$.
Hint: You should notice in part (a) that many indices appear twice in the probe sequence. Can you detect the pattern in which they repeat?
c) Argue that if $M \geq 3$ is prime and $\alpha \leq \frac{1}{2}$, then the probe sequence always finds an empty slot.

You are allowed to use modular arithmetic rules without proof, see Appendix B in the textbook for details.

Question $3 \quad[2+4(+5)+2=8(+5)$ marks $]$

We have seen one method of obtaining a universal family of hash-functions in class. This assignment discusses another one. Let us assume that all keys come from some universe $\{0, \ldots, U-1\}$, where $U=2^{m}$. Therefore any key k can be viewed as bitstring x_{k} of length m by taking its base- 2 representation.

Let us assume further that the hash-table-size M is $M=2^{b}$ for some integer b, with $b<m$. To choose a hash-function, we now randomly choose each entry in a $b \times m$-matrix H to be 0 or 1 (equally likely). Then compute $h_{k}=\left(H x_{k}\right) \% 2$, where x_{k} is now viewed as a vector and ' $\% 2$ ' is applied to each entry. The output is a b-dimensional vector with entries in $\{0,1\}$; interpreting it as a length- b bitstring gives a number $\{0, \ldots, M-1\}$ that we use as hash-value $h(k)$. For example, if $k=18, m=5, b=3$ and H is as shown below, then $h(k)=1$ since

$$
\underbrace{\left(\begin{array}{lllll}
0 & 1 & 1 & 0 & 1 \\
1 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 0
\end{array}\right)}_{H} \underbrace{\left(\begin{array}{l}
1 \\
0 \\
0 \\
1 \\
0
\end{array}\right)}_{18} \% 2=\underbrace{\left(\begin{array}{l}
0 \\
2 \\
1
\end{array}\right)}_{H x_{k}} \% 2=\underbrace{\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)}_{1 \text { as length-5 bitstring }}
$$

a) Let H be the above matrix, $m=5$ and $b=3$. Consider the keys 9 and 13 . What are their hash-values? Show your work.
b) Consider again $m=5, b=3$ and keys $k=9$ and $k^{\prime}=13$. Consider the same matrix H, except that the bits in the third column are randomly chosen. What is the probability that $h(k)=h\left(k^{\prime}\right)$? Justify your answer.
c) (Bonus) Show that (for any m, b) this method of choosing the hash function gives a universal hash function family, or in other words, $P\left(h(k)=h\left(k^{\prime}\right)\right) \leq \frac{1}{M}$ for any two keys $k \neq k^{\prime}$.
d) This method for obtaining universal hash-functions is much less popular than using the Carter-Wegman functions. Why do you think that that might be the case? (Expected length of answer is 1-3 sentences.)

Question $4 \quad[2+5+5+5=17$ marks $]$

A skewed $k d$-tree is a $k d$-tree where the splits are allowed to be less even: If a node v has n_{v} points in its subtree, then its sibling stores at least $n_{v} / 2$ and at most $2 n_{v}$ points in its subtree.
a) For $n=7$ and $n=9$, show a skewed $k d$-tree that stores n points and has the maximum possible height among all such trees. (You need not prove that it is maximal.) You only have to show the tree-structure; no need to show suitable points.
b) Give an upper bound on the height of a skewed $k d$-tree that stores n points. Give an exact bound (no asymptotics).
Also state what your bound evaluates to for $n=7,9$. For full credit, your bound must be at most one bigger than the height you achieved in part (a) for $n=7,9$.
c) One would insert in a skewed $k d$-tree as follows. First insert the point where it needs to be (by splitting at an appropriate leaf). Then check size-balances at the ancestors, and (if needed) re-build a maximal subtree where the size-balance is violated. Consider the following potential function:

$$
\Phi(\cdot):=c \sum_{v \in V} \log n_{v} \cdot \max \left\{0,\left|n_{v . l e f t}-n_{v . \text { right }}\right|-1\right\}
$$

where as before n_{v} denotes the number of points stored in the subtree rooted at v, and c is a constant. Show that during an insert without rebuilding, this potential function increases by $O\left(\log ^{2} n\right)$.
You may use without proof that $\log (x+1) \leq \log x+\frac{1}{x}$ for $x>0$.
(Motivation: With this potential function all operations have amortized run-time $O\left(\log ^{2} n\right)$, but to keep the assignment from getting too long you do not have to show this.)

- We can do a range-search on a skewed $k d$-tree in exactly the same manner as for a $k d$-tree. While the run-time is not as good as for a $k d$-tree, it is better than for quadtrees since at least we do not visit every node. Prove this. Specifically, prove that in a skewed $k d$-tree, the number of boundary nodes in any range-search is in $O\left(n^{c}\right)$ for some $c<1$.
Any $c<1$ will give you full credit, but we recommend $c=0.9$.

Question $5 \quad[5+5+2=12$ marks $]$

A range-counting-query is like a range search, except that you only need to report how many items fall into the range, you do not need to list which items they are.
a) Describe how any balanced binary search tree can be modified such that a range counting query can be performed in $O(\log n)$ time (independent of s, the number of points in the query-interval). Briefly state the changes needed, then describe the algorithm for the range counting query.
b) Now consider the 2-dimensional-case: Describe an appropriate range-tree based data structure such that you can answer range-counting-queries among 2-dimensional points in time $O\left((\log n)^{2}\right)$. Then describe the algorithm for the range counting query.
c) Prof. Conn Fused thinks that they can do a similar approach for kd-trees, so report the number of points in $O\left(\log ^{2} n\right)$ time. Why is this not correct?

For all questions concerning points and their data structures, the points are in general position.

