
University of Waterloo

CS240E, Winter 2024

Assignment 5

Due Date: Thursday, April 4, 2024, at 5pm

Be sure to read the assignment guidelines (http://www.student.cs.uwaterloo.ca/

~cs240e/w24/assignments.phtml). Submit your solutions electronically as individual PDF
files named a5q1.pdf, a5q2.pdf, . . . (one per question).

Grace period: submissions made before 11:59PM on April 4, will be accepted without
penalty. Please note that submissions made after 11:59PM will not be graded and may
only be reviewed for feedback.

Question 1 [3+2+2=7 marks]

Fast Fourier Transform gives us a way to multiply two polynomials of degree O(n) in
O(n log n) time (assuming arithmetic operations take constant time). This question explores
some of the many problems we can solve by phrasing them as a polynomial product.

a) Given two vectors a = [a1, . . . , an] and b = [b1, . . . , bn], explain how to compute the dot
product of a with every cyclic shift of b in O(n log n).

For instance, when n = 3, we would like to compute:

[a1, a2, a3] · [b1, b2, b3],
[a1, a2, a3] · [b2, b3, b1], and

[a1, a2, a3] · [b3, b1, b2].

b) We are given two cyclic strips a = [a1, . . . , an] and b = [b1, . . . , bn] where every entry
of each of a, b is either zero or one.

Figure 1: example cyclic strips.

Give an O(n log n) algorithm to find the number of ways to stack them on top of each
other so that no two one (1) entries of both a and b are adjacent.

c) We are given one cyclic strip a = [a1, . . . , an] where every entry of a is either zero or
one. Give an algorithm to find the number of ways to stack a on top of itself so that
all entries match. As before, the runtime should be in O(n log n).

1

http://www.student.cs.uwaterloo.ca/~cs240e/w24/assignments.phtml
http://www.student.cs.uwaterloo.ca/~cs240e/w24/assignments.phtml

Question 2 [3+2+3+3=11 marks]

Recall that we had two versions of the KMP failure function: For j < m− 1

• F [j] is the length of the longest prefix of P that is a suffix of P [1..j], and

• F+[j] is the length ℓ of the longest prefix of P that is a suffix of P [1..j] and where
additionally P [ℓ] ̸= P [j+1], or 0 if no such ℓ exists.

This assignment asks you to explore the difference that using F+ can make.

a) Show the Knuth-Morris-Pratt automaton for the pattern P = aaabaac for Σ = {a, b, c},
once when using F for the failure-arcs and once when using F+.

b) Consider the pattern P = am for some integer m. For 1 ≤ j ≤ m− 2, where does the
failure-arc from state j lead to if we use F and F+, respectively? Briefly justify your
answer.

c) Show that using F+ can cut the number of checks in half. (Recall that a check is
testing whether P [j] = T [i] for some j, i, as done in line 5 of KMP::patternMatching).

To do so, design (for all sufficiently large n) a text T of length n and a pattern P that
does not exist in T , but detecting this with KMP takes almost twice as many checks
with F than it does with F+. (You can choose the length of P ; it suffices to give one
P for each n.) Justify your choice by arguing how many checks are taken with each
failure-function.

[“Almost twice as many” means that as n goes to infinity, the ratio between the number
of checks should go to 2.

d) Show that for any text T and any pattern P not in T , using F will require at most
twice as many checks as using F+.

Question 3 [2+4+7=13 marks]

a) Consider the text S =ARECEDEDDEER. Show a Huffman-trie for this text (using ΣS =
{A,C,D,E,R}). Also indicate with every node (including interior nodes) the fre-
quency that this node had when building the Huffman-trie.

b) Assume we have characters x1, . . . , xn where xi has frequency F (i). Here F (i) is the
Fibonacci-sequence: F (1) = 1, F (2) = 1, F (i) = F (i−1) + F (i−2) for i ≥ 3. Argue
that any Huffman tree of these characters has height n−1.
Hint: For i ≥ 2, what is the frequency associated with the parent pi of xi?

c) Assume we have characters x1, . . . , xn where xi has frequency fi and mini{fi} = 1.
Assume further that some Huffman-tree T for these characters has height n−1. Argue
that maxi{fi} ≥ F (n−1), where F (·) is again the Fibonacci-sequence.

2

Hint: Use the structure of a binary tree of height n− 1 to enumerate your characters
suitably, and then argue a lower bound on fi and on the frequency associated with the
parent pi of xi.

Question 4 [2+4+2=8 marks]

This question concerns Lempel-Ziv-Welch encoding of the word An, which is the word con-
sisting of n copies of the character A. In the following, use as alphabet the 128 ASCII
characters, stored with code-words 0 up to 127. In particular, ‘A’ has code-word 65, and the
first code-word you can use for strings added to the dictionary is 128.

a) Give the encoding (as list of numbers, not as a bit-string) of A16. Show your work.

b) Recall that traditional Lempel-Ziv-Welch converts integers into 12-bit strings. This
means that when we add codeword 4096 to the dictionary, this would result in an
overflow-error.

When encoding An, what is the smallest n for which we get this overflow-error? Justify
your answer theoretically (i.e., the answer “I implemented LZW and it used code 4096
at n = X” will not give you credit.)

c) Let X be the answer that you got in part (b). Prove that for any ASCII-string of
length X or more, using Lempel-Ziv-Welch leads to a dictionary-overflow.

Question 5 [2+2+3+3=10 marks]

Recall the Elias-Gamma codes from class; we use Eγ(N) to denote it for integer N ≥ 1.

a) Show the trie that stores Eγ(N) for N ∈ {1, . . . , 7}.

b) Elias-Gamma codes begin with long runs of 0. For this reason, an idea to obtain shorter
codes is to encode these runs recursively. Specifically the recursive Elias-Gamma code
Er(N) is computed with Algorithm 1 given below.

Algorithm 1: recursiveEliasGamma::encodeOneNumber(N)

// pre: N ≥ 1
1 c← empty word
2 while N > 1 do
3 w ← binary representation of N
4 c.prepend(w)
5 N ← |w| − 1

6 c.prepend(0)
7 return(c)

Show Er(N) and Eγ(N) for N = 2, 4, 8, 16. No explanation needed.

3

c) You should notice that |Er(N)| ≥ |Eγ(N)| for i = 1, . . . , 16. What is the smallest value
of N such that |Er(N)| < |Eγ(N)|? Justify your answer.

d) Consider the following bitstring:

C = 01 1 1 0 1 0 1 0 0 1 1 0 1 0 1 0 1 0 0 1 1 0 1 0 1 0 1

which has the form C = Er(N1)++Er(N2)++ . . .++Er(Nk) for some integer k ≥ 1
and integers N1, . . . , Nk ≥ 1. What is N1? Explain how you obtained the answer by
describing the idea for an algorithm that would convert any concatenation of recursive
Elias-Gamma codes into the corresponding list of integers. Also show how this algo-
rithm worked to obtain N1. (You do not have to give the details of the algorithm, or
analyze its correctness or run-time.)

4

	[3+2+2=7 marks]
	[3+2+3+3=11 marks]
	[2+4+7=13 marks]
	[2+4+2=8 marks]
	[2+2+3+3=10 marks]

