University of Waterloo
 CS240E, Winter 2024

 Assignment 5

 Assignment 5}

Due Date: Thursday, April 4, 2024, at 5pm

Be sure to read the assignment guidelines (http://www.student.cs.uwaterloo.ca/ \sim cs240e/w24/assignments.phtml). Submit your solutions electronically as individual PDF files named a5q1.pdf, a5q2.pdf, ... (one per question).

Grace period: submissions made before 11:59PM on April 4, will be accepted without penalty. Please note that submissions made after 11:59PM will not be graded and may only be reviewed for feedback.

Question $1 \quad[3+2+2=7$ marks $]$

Fast Fourier Transform gives us a way to multiply two polynomials of degree $O(n)$ in $O(n \log n)$ time (assuming arithmetic operations take constant time). This question explores some of the many problems we can solve by phrasing them as a polynomial product.
a) Given two vectors $a=\left[a_{1}, \ldots, a_{n}\right]$ and $b=\left[b_{1}, \ldots, b_{n}\right]$, explain how to compute the dot product of a with every cyclic shift of b in $O(n \log n)$.
For instance, when $n=3$, we would like to compute:

$$
\begin{aligned}
& {\left[a_{1}, a_{2}, a_{3}\right] \cdot\left[b_{1}, b_{2}, b_{3}\right],} \\
& {\left[a_{1}, a_{2}, a_{3}\right] \cdot\left[b_{2}, b_{3}, b_{1}\right] \text {, and }} \\
& {\left[a_{1}, a_{2}, a_{3}\right] \cdot\left[b_{3}, b_{1}, b_{2}\right] .}
\end{aligned}
$$

b) We are given two cyclic strips $a=\left[a_{1}, \ldots, a_{n}\right]$ and $b=\left[b_{1}, \ldots, b_{n}\right]$ where every entry of each of a, b is either zero or one.

Figure 1: example cyclic strips.

Give an $O(n \log n)$ algorithm to find the number of ways to stack them on top of each other so that no two one (1) entries of both a and b are adjacent.
c) We are given one cyclic strip $a=\left[a_{1}, \ldots, a_{n}\right]$ where every entry of a is either zero or one. Give an algorithm to find the number of ways to stack a on top of itself so that all entries match. As before, the runtime should be in $O(n \log n)$.

Question $2 \quad[3+2+3+3=11$ marks $]$

Recall that we had two versions of the KMP failure function: For $j<m-1$

- $F[j]$ is the length of the longest prefix of P that is a suffix of $P[1 . . j]$, and
- $F^{+}[j]$ is the length ℓ of the longest prefix of P that is a suffix of $P[1 . . j]$ and where additionally $P[\ell] \neq P[j+1]$, or 0 if no such ℓ exists.

This assignment asks you to explore the difference that using F^{+}can make.
a) Show the Knuth-Morris-Pratt automaton for the pattern $P=a a a b a a c$ for $\Sigma=\{a, b, c\}$, once when using F for the failure-arcs and once when using F^{+}.
b) Consider the pattern $P=a^{m}$ for some integer m. For $1 \leq j \leq m-2$, where does the failure-arc from state j lead to if we use F and F^{+}, respectively? Briefly justify your answer.
c) Show that using F^{+}can cut the number of checks in half. (Recall that a check is testing whether $P[j]=T[i]$ for some j, i, as done in line 5 of KMP::patternMatching).
To do so, design (for all sufficiently large n) a text T of length n and a pattern P that does not exist in T, but detecting this with KMP takes almost twice as many checks with F than it does with F^{+}. (You can choose the length of P; it suffices to give one P for each n.) Justify your choice by arguing how many checks are taken with each failure-function.
["Almost twice as many" means that as n goes to infinity, the ratio between the number of checks should go to 2 .
d) Show that for any text T and any pattern P not in T, using F will require at most twice as many checks as using F^{+}.

Question $3 \quad[2+4+7=13$ marks]

a) Consider the text $S=$ ARECEDEDDEER. Show a Huffman-trie for this text (using $\Sigma_{S}=$ $\{A, C, D, E, R\}$). Also indicate with every node (including interior nodes) the frequency that this node had when building the Huffman-trie.
b) Assume we have characters x_{1}, \ldots, x_{n} where x_{i} has frequency $F(i)$. Here $F(i)$ is the Fibonacci-sequence: $F(1)=1, F(2)=1, F(i)=F(i-1)+F(i-2)$ for $i \geq 3$. Argue that any Huffman tree of these characters has height $n-1$.
Hint: For $i \geq 2$, what is the frequency associated with the parent p_{i} of x_{i} ?
c) Assume we have characters x_{1}, \ldots, x_{n} where x_{i} has frequency f_{i} and $\min _{i}\left\{f_{i}\right\}=1$. Assume further that some Huffman-tree T for these characters has height $n-1$. Argue that $\max _{i}\left\{f_{i}\right\} \geq F(n-1)$, where $F(\cdot)$ is again the Fibonacci-sequence.

Hint: Use the structure of a binary tree of height $n-1$ to enumerate your characters suitably, and then argue a lower bound on f_{i} and on the frequency associated with the parent p_{i} of x_{i}.

Question $4 \quad[2+4+2=8$ marks]

This question concerns Lempel-Ziv-Welch encoding of the word A^{n}, which is the word consisting of n copies of the character A. In the following, use as alphabet the 128 ASCII characters, stored with code-words 0 up to 127 . In particular, ' A ' has code-word 65 , and the first code-word you can use for strings added to the dictionary is 128 .
a) Give the encoding (as list of numbers, not as a bit-string) of A^{16}. Show your work.
b) Recall that traditional Lempel-Ziv-Welch converts integers into 12-bit strings. This means that when we add codeword 4096 to the dictionary, this would result in an overflow-error.
When encoding A^{n}, what is the smallest n for which we get this overflow-error? Justify your answer theoretically (i.e., the answer "I implemented LZW and it used code 4096 at $n=X^{\prime \prime}$ will not give you credit.)
c) Let X be the answer that you got in part (b). Prove that for any ASCII-string of length X or more, using Lempel-Ziv-Welch leads to a dictionary-overflow.

Question $5 \quad[2+2+3+3=10$ marks $]$

Recall the Elias-Gamma codes from class; we use $E_{\gamma}(N)$ to denote it for integer $N \geq 1$.
a) Show the trie that stores $E_{\gamma}(N)$ for $N \in\{1, \ldots, 7\}$.
b) Elias-Gamma codes begin with long runs of 0 . For this reason, an idea to obtain shorter codes is to encode these runs recursively. Specifically the recursive Elias-Gamma code $E_{r}(N)$ is computed with Algorithm 1 given below.

```
Algorithm 1: recursiveEliasGamma::encodeOneNumber( \(N\) )
    // pre: \(N \geq 1\)
\(1 c \leftarrow\) empty word
    while \(N>1\) do
        \(w \leftarrow\) binary representation of \(N\)
        c.prepend ( \(w\) )
        \(N \leftarrow|w|-1\)
    6 c.prepend(0)
    7 return(c)
```

Show $E_{r}(N)$ and $E_{\gamma}(N)$ for $N=2,4,8,16$. No explanation needed.
c) You should notice that $\left|E_{r}(N)\right| \geq\left|E_{\gamma}(N)\right|$ for $i=1, \ldots, 16$. What is the smallest value of N such that $\left|E_{r}(N)\right|<\left|E_{\gamma}(N)\right|$? Justify your answer.
d) Consider the following bitstring:

$$
C=0111010100110101010011010101
$$

which has the form $C=E_{r}\left(N_{1}\right)+E_{r}\left(N_{2}\right)+\ldots+E_{r}\left(N_{k}\right)$ for some integer $k \geq 1$ and integers $N_{1}, \ldots, N_{k} \geq 1$. What is N_{1} ? Explain how you obtained the answer by describing the idea for an algorithm that would convert any concatenation of recursive Elias-Gamma codes into the corresponding list of integers. Also show how this algorithm worked to obtain N_{1}. (You do not have to give the details of the algorithm, or analyze its correctness or run-time.)

