Overview

- Asymptotic notation review
- Two approaches to $n \in \omega\left(2^{\sqrt{l g} n}\right)$
- Memory model review
- Runtime analysis example
- Little-o characterization
- Bounds with integration

Problems

Q1. Show that $n \in \omega\left(2^{\sqrt{\lg n}}\right)$ using the definition.
Q2. Give a tight bound on the runtime of the following algorithm as a function of n.

```
k = 1
for(i = 1; i <= n; ++i):
    j = 0
    while j <= n:
        j += k
    k *= 2
```

Q3. Let $f(n), g(n)$ be eventually positive. In lecture we saw that if $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=0$ then $f(n) \in o(g(n))$. Prove the converse.
Q4. Give an exact bound on the n-th Harmonic number $H_{n}:=\sum_{k=1}^{n} 1 / k$.
Note: this question requires bounds with integration.

Additional problems

Q5. Give asymptotic upper and lower bounds (make them as tight as you can) for $T(n)$ if,
(a) $T(n)=3 T(n / 3)+n / \lg n$
(b) $T(n)=T(n-1)+1 / n$
(c) $T(n)=\sqrt{n} T(\sqrt{n})+n$

