
CS240E W24 Tutorial 3 Jan. 29

Overview

• average-case vs expected runtime

– BST height

– probabilistic analysis (hiring
problem)

– Morris’ counter (Monte Carlo
algorithm)

– string comparison

• amortized analysis

• partially sorted array (sorting lower
bound review)

• searching lower bound

• more practice with: indicator ran-
dom variables, recurrence relations,
binary search

Problems

Q1. Average-case vs expected (hiring problem). Suppose we must hire a new
employee. There are n candidates sequentially, one each day.

It takes I time to interview a candidate, and it takes H units to hire them.

We want to have at all times the best possible person for the job. After interviewing
each applicant, if they are better than our current employee, we hire them immediately
(and fire our current employee).

We can compare two candidates in constant time.

hire(cand[1..n]):

curr = dummy candidate // compares worse than anyone

for i = 1..n:

interview cand[i]

if cand[i] is better than curr:

hire cand[i]

curr = cand[i]

Suppose m candidates are hired. Then the worst-case runtime is in Θ(In+Hm).

We can rank each candidate with a unique number between 1 and n, and use rank [i]
to denote the rank of candidate i. We adopt the convention that a higher ranked
applicant corresponds to a better qualified applicant. Note that the ordered list

⟨rank [1], . . . , rank [n]⟩

is a permutation of the list ⟨1, . . . , n⟩.

1



(a) Describe an instance that achieves the runtime Ω(Hn).

(b) Show that in the average-case we hire a new candidate O(log n) times.

Q2. Amortized analysis. We are given a binary search tree on n nodes, storing n
distinct keys. We can list all keys in increasing order using in-order traversal in time
linear in n.

The operation successor(x) returns the in-order successor of x in the tree, which is the
node z such that z.key > x.key and no ther keys are stored in between (or null if such
z does not exist), in Θ(height of the tree) time.

Consider the following algorithm to print all keys in the tree T in increasing order:

x = T.get_min(); // left-most node, Theta(height)

do {

print(x.key)

x = T.successor(x)

} while (x is not null);

(a) Give an asymptotic bound on the worst-case runtime of this algorithm in terms of
the height h of T . When is the bound minimized?

(b) Show that the amortized runtime of successor is O(1). Conclude that the runtime
of the algorithm is in Θ(n).

Q3. Morris’ probabilistic counting. With a deterministic b-bit counter, we can
only count up to 2b − 1. With probabilistic counting we can count to larger values at
the expence of loss of precision.

Let a counter reading of i represent a count of vi, for 0 ≤ i ≤ 2b − 1. Initially the
counter reads 0, indicating the count of v0 = 0.

The operation increment works on a counter with reading i in a probabilistic manner:

if i < 2b − 1, increase counter reading with probability 1/(vi+1 − vi), and leave the
counter unchanged otherwise;

if i = 2b − 1, report overflow.

Note that if we take vi = i, then the counter is an ordinary deterministic counter. More
interesing situations arise if vi = 100i, if vi = 2i, or if vi = i-th Fibonacci number.

Assuming the probability of an overflow is negligible, show that the value represented
by the counter after n increment opreations is n.

Q4. String comparison. Let A,B be two binary strings of length n. A string
comparison of A with B determines whether A is smaller, larger, or the same as B by
the first index where they differ (if it exists):

2



str_cmp(A, B, n):

for(i = 0; i < n; ++i):

if A[i] < B[i]: return "A is smaller"

if A[i] > B[i]: return "A is bigger"

return "they are equal"

Show that the average-case runtime of str-cmp is O(1). You may use that
∑

i≥0 i/2
i ∈

O(1) without proof.

Q5. Partially sorted array. Let 0 < ϵ < 1. Suppose we have an array A of n items
such that the first n− nϵ items are sorted. Give an O(n) time algorithm to sort A.

Q6. Searching lower bound. Show that any comparison-based searching algorithm
uses Ω(log n) comparisons:

(a) in the worst case; and

(b) in the average case.

Hint: this is true even if the input is sorted.

Additional problems

Q7. Indicator random variables. Let A[1..n] be an array of n distinct integers.
We say that a pair (i, j) is an inversion of A if i < j but A[i] > A[j]. Suppose that the
elements of A form a uniform random permutation of ⟨1, . . . , n⟩. Find the expected
number of inversions of A.

Q8. Recursion tree. Use a recursion tree to give an asymptotically tight solution to
the recurrence

T (n) = T (n− a) + T (a) + cn

for constants a ≥ 1, c > 0.

Q9. Perfect square.

(a) Give an algorithm to test whether a given n ≥ 1 is a perfect square in O(log n)
time.

(b) If n is a perfect square, compute
√
n in O(log n) time.

Q10. Shifted array. We are given an array a of n numbers that was initially in
sorted order, and then was shifted by some unknown amount. For example,

[1, 2, 3, 4, 5, 6] 7→ [3, 4, 5, 6, 1, 2].

Find the minimum element of a in O(log a) time.

3


	Overview
	Problems
	Additional problems

