
CS240E W24 Tutorial 5 Feb. 12

Overview

• Fibonacci heaps

– binomial heap review

– definition

– analysis (potential function
method)

– applications

• splay trees

– biased search requests (review)

– move-to-front in BSTs

– definition

– analysis (potential function
method)

Problems

Fibonacci heaps. The Fibonacci heap is data structure for priority queue opera-
tions. Several of its operations have better amortized running time those of binary and
binomial heaps.

The number of items in the heap(s) at the time of an operation is denoted by n. We
also assume that our heaps are min-oriented, and that all keys are distinct.

Binary heap (worst-case) Fibonacci heap (amortized)
insert Θ(log n) Θ(1)
delete-min Θ(log n) O(log n)
merge Θ(n) Θ(1)
decrease-key Θ(log n) Θ(1)

Table 1: Runtimes for operations on two implementations of a heap.

If we do not need the merge operation, ordinary binary heaps work well.

From the theoretic analysis standpoint, Fibonacci heaps are especially useful when we
have to decrease-key often. Some algorithms for graph problems call decrease-key once
per edge: when a graph has many edges, the Θ(1) amortized time is a big improvement
over the Θ(log n) worst-case time.

A Fibonacci heap is a collection of rooted trees with a min-heap ordering. Every node
x knows its parent and children. The children of x are linked together in a circular,
doubly linked list, which we refer to as the child list of x. Each child y in a child list
has pointers y.left and y.right pointing to the y’s left and right siblings respectively. If

1



y is an only child, then y .left = y .right = y. We note that siblings may appear in any
order in the child list.

We also store the number of children of a node in x.degree (not counting the parent
pointer). Each node also contains a boolean attribute x.mark, which indicates whether
x has lost a child since the last time x was made child of another node. Until we look
at decrease-key, we set all mark attributes to false. This field is primarily used for the
decrease-key operation.

We access a Fibonacci heap H by a pointer H.min to the minimum node: root of a
tree containing a minimum key. If H is empty, H.min is null.

The roots are linked together using their left and right pointers into a circular, doubly
linked list called the root list. Trees may appear in any order within a root list.

Figure 1: A Fibonacci heap [CLRS].

For a given Fibonacci heap H, we denote by:

• t(H) : the number of trees in the root list

• m(H) : the number of marked nodes in H

Define the potential function,

Φ(H) = t(H) + 2m(H).

(a) Verify that Φ is indeed a potential function.

(b) Compute the potential of the Fibonacci heap in Figure 1.

Define time units so that one time unit is sufficiently large to cover the cost of any
constant time operation we encounter.

2



Let D(n) be an upper bound on the maximum degree of any node in an n-node Fi-
bonacci heap. It can be shown that, D(n) ≤ ⌊log n⌋.
The idea behind the operations is to delay work as long as possible.

(c) We implement insert(H, x) by simply adding x to the root list of H in constant
time.

insert(H, x):

// pre: x.key initialized

x.deg = 0; x.parent = null; x.child = null; x.mark = false;

insert x into H’s root list

if x.key < H.min.key: H.min = x.key

++H.n

Show that the amortized cost of insert is constant.

(d) We implement merge by simply concatenating root lists (also in constant time):

merge(H1, H2):

// post: returns a new Fib. heap: H = H1 U H2

H’s root list = (H1’s root list) concatenate (H2’s root list)

H.min = element with smaller key of { H1.min, H2.min }

H.n = H1.n + H2.n

return H

Show that the amortized cost of merge is constant.

(e) delete-min is the operation where the delayed work of consolidating the trees in
the root list finally occurs.

delete_min(H):

// pre: H is not empty

z = H.min

for each child x of z:

moving x to root list of H // update left and right pointers

x.parent = null

remove z from root list of H

if z == z.right:

// no item in root list besides z (after moving z’s children)

H.min = null

else:

consolidate(H)

--H.n

return z

3



The subroutine consolidate repeatedly executes the following steps until every
root in the root list has a distinct degree value:

i. find two roots x, y with the same degree, and x.key ≤ y.key ;

ii. Link y to x: remove y from root list, make y child of x (incrementing degree
of x and clearing the mark on y).

This procedure is very similar to binomial-heap::make-proper from lecture.

consolidate(H):

n = H.n

// compute log H.n (an upper bound on D(H.n))

for (l = 0; n > 1; n /= 2):

++l

A = array of size l+1, initialized all null

for each node w in the root list of H:

x = w

d = x.degree

while A[d] != null:

y = A[d] // another root with same degree as x

if x.key > y.key:

swap(x, y)

link(H, y, x) // as above in (ii)

A[d] = null

d++

A[d] = x

H.min = null

for i = 0..l:

if(A[i] != null):

insert A[i] into H’s root list // updating H.min if necessary

Show that the amortized cost of delete-min is O(log n).

Hint: Show that it is in O(D(n)), by first showing that total actual work in
extracting the minimum node is in O(D(n) + t(H)).

Static ordering. Let A be an unordered array with n distinct items k0, ..., kn−1.
Give an asymptotically tight Θ-bound on the expected access cost if you put A in the
optimal static order for the followng probability distributions:

(a) pi =
1
n
for 0 ≤ i ≤ n− 1

(b) pi =
1

2i+1 , for 0 ≤ i ≤ n− 2, pn−1 = 1−
∑n−2

i=0 pi =
1

2n−1

4



Dynamic orderings. Consider a linked list with the keys k1, k2, . . . , kn in that or-
der. Give a sequence of n searches such that the Move-To-Front heuristic uses O(n)
comparisons while the Transpose heuristic uses Ω(n2) comparisons.

Splay trees.1 Given the following splay tree S, calculate its potential using the
potential function

Φ(i) :=
∑
v∈S

log n(i)
v ,

where n
(i)
v is the number of nodes in the subtree rooted at v after i operations, including

v itself. Insert the key 18. Calculate the new potential. Verify that the difference
between the potential difference is less than 4 log n − 2R + 2, where R is the number
of rotations.

20

10

5 15

12 17

16 19

25

1We will define splay trees in Tutorial

5


	Overview
	Problems

