
CS240E W24 Tutorial 7 Mar. 4

Prime numbers

Motivation. For increasing the table size in hashing, we wanted to find a prime of a
certain size. Specifically, given an integer M > 1, we would like to find a prime of size
at least 2M .

Our approach is based on Bertrand’s postulate:

For all n > 1, there is a prime p such that

n < p < 2n.

Q1. Give an O(M
√
M) algorithm to find the next prime that is at least 2M (solution

below).

We can iterate over 2M ≤ x ≤ 4M , and break as soon as we find that x is prime.

The most naive version of is_prime(n) is to test whether n is divisible by each of
2, 3, . . . , n− 1, in O(n) time.

One improvement we can make is to only test whether n is divisible by a divisor in
2, . . . , ⌊

√
n⌋. If n has a factor between 2 and n−1, then one of them has to be at most√

n.

An optimization is to only test if n is divisible by odd numbers at most
√
n (and check

two separately). This improvement gives an algorithm that only does half the checks
and is about twice as fast, but has the same complexity asymptotically.

A key observation is that it is sufficient to only iterate over prime numbers at most√
n. If x divides n, then every prime divisor of x divides n. This should significantly

improve is_prime(n): for intuition, there are only 25 primes that are at most 100, 168
primes that are at most 1000, 1229 primes that are at most 10000. More concretely, if
π(n) := number of primes in [1, n], then

π(n) ∈ Θ

(
n

log n

)
.

For completeness we mention that if n ≥ 55,

n

lnn+ 2
< π(n) <

n

lnn− 4
.

So if we know the primes that are at most
√
n, we can check if n is prime inO(

√
n/ log n).

1



Sieve of Eratosthenes. This is a very well-known and practical algorithm for com-
puting primes in [0..n] in O(n log log n) time. The idea is to write down all numbers
between 2 and n, and initialize is_prime[x] to true for all of them, and to iterate
over them in increasing order. Every time we arrive at a number x that has not been
“crossed out” (i.e. is_prime[x] is true), we “cross out” all the multiples of x starting
with x · x.

is_prime[0..n] = [true, ..., true]

is_prime[0] = is_prime[1] = false

for i = 2..n:

if is_prime[i]:

for j = i*i..n, j += n: // i*2, i*3, ... already crossed

out

is_prime[j] = false

Q2. Argue the runtime of O(n log n).

Q3. Our next goal is to prove the runtime is Θ(n log log n).

(a) Denote by pn the n-th prime number. Show that pn ∈ Θ(n log n) using the
asymptotic bound on π(n).

(b) Give a proof sketch that the runtime is in O(n log log n) using bounds with
integration.

The lower bound is obtained from exactly the same argument as in part (b).

A few technical notes about implementation:

• to obtain just the primes, once we know i is prime, we can push-back i into a
dynamic array

• we should be careful computing i*i because it might overflow

• depending on the use case (for example if we are not storing the primes as in the
first point), we may even stop as soon as i*i > n

This optimization does not improve the runtime asymptotically (as seen in Q2),
but it is noticably faster when implemented.

Q4. Give a way to reduce space and the number of operations performed by the Sieve
approximately in half.

Q5. Give an O(n log n log log n) algorithm to count the number of factors in the prime
factorization for each of 2, . . . , n.

For example, 20 = 2 · 2 · 5, so 20 has 3 factors in its factorization. Similarly,
35 = 5 · 7 has 2 factors in its factorization.

2



Q6. How can the Sieve of Eratosthenes be adapted to compute all prime numbers in
a particular range [a, b] when b is far too big to compute all primes in [0, b]?

Hint: the intended complexity is O(
√
b log log b+ (b− a) log log b).

While hash tables of such big size are unlikely to occur in practice, this variant
is perhaps more natural when considering table doubling.

Number theoretic functions. We first discuss several well-known functions from
number theory.1

For the next problems, assume that n = pa11 · · · pakk where p1, . . . , pk are the first k
primes and all ai ≥ 0. We also assume we already computed the 1-indexed array
primes with the first (sufficiently many) primes.

The number of prime factors of n, which is
∑

ai, is easy to find. We have computed
it from scratch in Q5.

Q7. Give a way to compute the number of prime factors of n (assuming we already
have the array primes).

Hint: intended solution has time Θ(π(
√
n)).

Q8. Using Q7, implement factor, which given an integer n returns a dynamic array
containing all the prime factors of n. The time complexity should be the same.

For example, if n = 12, then factor(n) returns [2, 2, 3].

We should note that the worst case for the algorithm in Q8 is very slow. If n is a prime,
then the algorithm tests all the first π(

√
n) primes. Although there are optimizations

to the algorithm in Q8, we still do not have a computationally feasible way to factor
large numbers, which serves as the basis for cryptography2 It is fun to think about
some special cases nonetheless.

Fermat’s factorization method. We can write an odd composite number n = p · q
as a difference of squares:

n =

(
p+ q

2

)2

︸ ︷︷ ︸
a2

−
(
p− q

2

)2

︸ ︷︷ ︸
b2

.

This factorization method guesses the first square a2 (as
√
n, the smallest it can be),

and then checks if b2 = a2 −n is also a square. If it is return, otherwise increase a and
try again.

1Perhaps you are already familiar with many of these from before. Either way, if you are interested
in learning more, one fun class to take is PMATH 341. Keywords: multiplicative functions.

2See, for example, CO487.

3



fermat(n):

// returns a factor of n

a = ceil(sqrt(n))

b_squared = a*a - n

b = round(sqrt(b_squared))

while b * b != b_squared: // while b is not a perfect square

++a // try the next guess

b_squared = a*a - n

b = round(sqrt(b_squared))

Q9. Give the asymptotic runtime of this algorithm. When does this algorithm perform
well?

It is interesting to note that implementations of encryption that relies on difficulty of
factoring are made extremely vulnerable if consecutive primes are used in key genera-
tion because of this Factorization method.

We denote by τ(n) the number of factors of n. For example, n = 60 has four prime
factors: 2, 2, 3, 5. Given the prime factorization of n we may compute it as, τ(n) =∏
(ai + 1).

Q10. Give a way to count the number of divisors of n given only the array prime.

4


	Prime numbers

