Range search

1. Range tree space. Prove or disprove: for any set of n points in general position, the range tree uses $\Omega(n \log n)$ space.
2. Priority Search Tree. Show how to build a priority search tree in $O(n \log n)$ worst-case time. Note: in fact, $O(n)$ worst-case (using just CS240E material) is possible.
3. kd-tree. Create a set of n points and a range-query such that doing the rangequery on the kd-tree of the points requires $\Omega(\sqrt{n})$ boundary nodes.

4. Quad-tree.

(a) For an arbitrary n, construct a set of points such that the quad-tree has at least n nodes, and give a range-search query such that all nodes are visited, and not a single point gets returned.
(b) Assume that T is a quad-tree with at least two points such that during some range-search, there is at least one outside node and at least one inside-node (the example from Module 8, slide 11 satisfies this). What is the minimum possible height of T ?
The example has height 3 , so the question is whether height 3 is always required, or whether this could also happen with height 2 or even height 1 ?

String matching

5. Cyclic shift. Given two strings w and x of length n, determine if w can be obtained by cyclically shifting the characters of x. For example, the algorithm should return true if the input is alloy and loyal, and false if the inputs are tarot and otter. Your algorithm should take $O(n)$ time for two strings of length n.
