
CS240E W24 Tutorial 10 Mar. 25

String matching

Boyer-Moore. Apply the Boyer-Moore algorithm to the following pattern and text.
Show

1. with only the bad-character heuristic,

2. with the good-suffix heuristic.

T : d a y s a y m a y a a a y b a y l a y k a y r a y j a y
P : d a y d a y h a y a y a y
(a)
(b)

Boyer-Moore.

Boyer-Moore can be modified in many ways. For each of the modifications listed
below, state whether the modification is valid, i.e. the modified Boyer-Moore will
always successfully find the first occurrence of P in T , if P appears in T , or return
FAIL if P is not in T .

If the answer is “Yes”, provide a brief explanation of why it is still valid. If the answer
is “No”, demonstrate a counter-example, i.e. trace the algorithm on specific P and T
of your choice where the result is incorrect.

(a) Using a first-occurrence function (denoting the index of the first occurrence of the
argument character) instead of a last-occurrence function.

(b) When checking a pattern shift, compare characters from the start of the pattern
and move forward, instead of scanning backwards from the end of the pattern.

(c) Use the last-occurrence function for P [0..m − 2], i.e. P with its last character
removed, instead of the last-occurrence function for P .

Most common substring. Let s be a string of length n and let Ts denote the
corresponding suffix tree. For an integer parameter 1 ≤ l ≤ n, give a O(n) time
algorithm that finds a most commonly occurring substring of length l in s.

Pattern matching.

Consider the pattern P = 0110101 and the text T listed in the following table.

1

(a) Indicate all the checks that were done by the brute-force method.

(b) Consider the Karp-Rabin fingerprint that simply counts the number of 1s in the
bit-string. Is this a rolling hash-function? And using these fingerprints, how many
checks were done during Karp-Rabin pattern matching?

(c) Compute the KMP failure-function for P .

(d) Show the KMP automaton for P .

(e) Consider now the pattern P = fiddledidi. Show the Boyer-Moore last-occurrence
array.

Suffix trees. Jason discovered a secret message in the form of a suffix tree S, indicating
the location of a hidden treasure.

1. Design an algorithm that recovers the original text T from its corresponding
suffix tree S. The algorithm should run in O(n) time while using O(n) auxiliary
space.

2. Determine the original text for the following suffix tree:

2

Consecutive strings in a trie.

Given an uncompressed trie T that stores a list of binary strings, design an algorithm
consecutive(b1, b2) that takes two binary strings in T as input, and outputs true if the
strings are consecutive in pre-order traversal of the trie, and outputs false otherwise.

Assume that branches are ordered as $, 0, 1. The runtime should be bounded byO(|b1|+
|b2|).
For example, suppose T stores {000, 01, 0110, 101, 11}. Then:

• consecutive(0110, 101) returns true

• consecutive(01, 000) returns true

• consecutive(11, 000) returns false

3

	String matching

