CS240E W24 Tutorial 10 Mar. 25

String matching

Boyer-Moore. Apply the Boyer-Moore algorithm to the following pattern and text.
Show

1. with only the bad-character heuristic,

2. with the good-suffix heuristic.

(oW

T~
o

TN N
T o

Boyer-Moore.

Boyer-Moore can be modified in many ways. For each of the modifications listed
below, state whether the modification is valid, i.e. the modified Boyer-Moore will
always successfully find the first occurrence of P in T, if P appears in 1", or return
FAIL if P is not in T

If the answer is “Yes”, provide a brief explanation of why it is still valid. If the answer
is “No”, demonstrate a counter-example, i.e. trace the algorithm on specific P and T
of your choice where the result is incorrect.

(a) Using a first-occurrence function (denoting the index of the first occurrence of the
argument character) instead of a last-occurrence function.

(b) When checking a pattern shift, compare characters from the start of the pattern
and move forward, instead of scanning backwards from the end of the pattern.

(c) Use the last-occurrence function for P[0..m — 2], i.e. P with its last character
removed, instead of the last-occurrence function for P.

Most common substring. Let s be a string of length n and let 7, denote the
corresponding suffix tree. For an integer parameter 1 < [< n, give a O(n) time
algorithm that finds a most commonly occurring substring of length [in s.

Pattern matching.

Consider the pattern P = 0110101 and the text 7" listed in the following table.

(a) Indicate all the checks that were done by the brute-force method.

(b) Consider the Karp-Rabin fingerprint that simply counts the number of 1s in the
bit-string. Is this a rolling hash-function” And using these fingerprints, how many
checks were done during Karp-Rabin pattern matching?

(¢) Compute the KMP failure-function for P.
(d) Show the KMP automaton for P.
(e) Consider now the pattern P = fiddledidi. Show the Boyer-Moore last-occurrence

array.

Suffix trees. Jason discovered a secret message in the form of a suffix tree S, indicating
the location of a hidden treasure.

1. Design an algorithm that recovers the original text 7' from its corresponding
suffix tree S. The algorithm should run in O(n) time while using O(n) auxiliary
space.

2. Determine the original text for the following suffix tree:

P

M
OgNEIRO o

S I I S

P P
EUrG N ONNETNEINO 5)
P

P S S P

S
T (7Bl (7]

Consecutive strings in a trie.

Given an uncompressed trie 7" that stores a list of binary strings, design an algorithm
consecutive(by, by) that takes two binary strings in 7" as input, and outputs true if the
strings are consecutive in pre-order traversal of the trie, and outputs false otherwise.

Assume that branches are ordered as $, 0, 1. The runtime should be bounded by O(]b;|+
[b2]).
For example, suppose T stores {000,01,0110,101,11}. Then:

e consecutive(0110,101) returns true

e consecutive(01,000) returns true

e consecutive(11,000) returns false

	String matching

