
CS 231
Naomi Nishimura

Pseudocode

In lectures, algorithms will often be expressed in pseudocode, a mixture of code and English.
While understanding pseudocode is usually not difficult, writing it can be a challenge.

One example of pseudocode, used in this course, is presented in Section 2. Section 3 contains
examples of pseudocode found in various textbooks.

1 Guidelines for writing pseudocode

Why use pseudocode at all? Pseudocode strikes a sometimes precarious balance between the
understandability and informality of English and the precision of code. If we write an algorithm
in English, the description may be at so high a level that it is difficult to analyze the algorithm
and to transform it into code. If instead we write the algorithm in code, we have invested a lot
of time in determining the details of an algorithm we may not choose to code (as we typically
wish to analyze algorithms before deciding which one to code). The goal in writing pseudocode,
then, is to provide a high-level description of an algorithm which facilitates analysis and eventual
coding (should it be deemed to be a “good” algorithm) but at the same time suppresses many of
the details that vanish with asymptotic notation. Finding the right level in the tradeoff between
readability and precision can be tricky. If you have questions about the pseudocode you are
writing on an assignment, please ask one of the course personnel to look it over and give you
feedback (preferably before you hand it in so you can change it if necessary).

Just as a proof is written with a type of reader in mind (hence proofs in undergraduate
textbooks tend to have more details than those in journal papers), algorithms written for dif-
ferent audiences may be written at different levels of detail. In assignments and exams for
the course, you need to demonstrate your knowledge without obscuring the big picture with
unneeded detail. Here are a few general guidelines for checking your pseudocode:

1. Mimic good code and good English. Using aspects of both systems means adhering to the
style rules of both to some degree. It is still important that variable names be mnemonic,
comments be included where useful, and English phrases be comprehensible (full sentences
are usually not necessary).

2. Ignore unnecessary details. If you are worrying about the placement of colons, you are
using too much detail. It is a good idea to use some convention to group statements
(begin/end, brackets, or whatever else is clear), but you shouldn’t obsess about syntax.

3. Don’t belabour the obvious. In many cases, the type of a variable is clear from context;
unless it is critical that it is specified to be an integer, for example, it is often unnecessary
to make it explicit.

4. Take advantage of programming shorthands. Using branching or looping structures is
more concise than writing out the equivalent in English; general constructs that are not

CS 231: Pseudocode 2

peculiar to a small number of languages are good candidates for use in pseudocode. Using
parameters when defining functions is concise, clear, and accurate, and hence should be
included in your pseudocode.

5. Consider the context. If you are writing an algorithm for mergesort, the statement “Use
mergesort to sort the values” is hiding too much detail; if we have already studied merge-
sort in class and later use it as a subroutine in another algorithm, the statement would
be appropriate to use.

6. Don’t lose sight of the underlying model. It should be possible to “see through” your
pseudocode to the model below; if not (that is, you are not able to analyze the algorithm
easily), it is written at too high a level.

7. Check for balance. If the pseudocode is hard for a person to read or difficult to translate
into working code (or worse yet, both!), then something is wrong with the level of detail
you have chosen to use.

2 Pseudocode used in the course

The pseudocode used in the course will adhere to the following conventions:

• Variable names are capitalized, and function names are written in all capital letters. Where
helpful for readability, such as to separate words, an underscore () is used.

• To make it distinguishable from code, which is presented in typewriter font, pseudocode
is presented using italics. (The one exception is function names, which may be written
with or without italics.)

• Simple Python list operations, such as [] for an empty list or accessing an item in a
position, will be included, but no powerful operations, such as sorted and reverse.

• The Python list operation slice can be used, with the indices having the same meaning as
in Python: [a:b] consists of items a up to but not including b, where if a is omitted the
slice starts at the first item in the list and if b is omitted the last item in the slice is the
last item in the list. The operation can also be used for strings.

• The Python method len will be written as Length for consistency with other names.

• Each function definition contains a preamble consisting of the name of the function and
parameters, the input, the output (if any), and side effects (if any).

• Function applications are given as the name of the function with all parameters appearing
afterwards in parentheses, separated by commas. For consistency, instead of using dot
notation for methods, the object appears as one of the inputs. For example, to determine
the length of list L we would write Length(L).

• Reserved words (such as for and if) are shown in boldface.

CS 231: Pseudocode 3

• Assignment statements are shown using←, like in Example 3. Other common conventions
are the use of = (Example 4) and := (Example 2).

• Types of variables are not listed explicitly, unlike in Examples 2 (which uses integer)
and 4 (which uses int). Ideally, the code will be written in such a way that the type is
clear from context, or from the listing of inputs and outputs.

• Indentation is used to group statements, like in Python.

• The word return is used to indicate that a value is returned.

• Branching mimics Python; thus, if and else are used, but unlike in Examples 1–3, not
then.

• In for loops, a loop that goes from the value Start to the value Finish will be written for
Count from Start to Finish, where Count can be replaced by a variable of another name.
The comparable Python code would be for count in range(start, finish+1).

• For a for loop over a list or other collection, for each ... in is used, such as for each
Item in List.

• For the ease of analysis, almost always a line will contain a finite number of simple tasks
(cost Θ(1)) or a function application.

As you can see from the example of binary search below, the pseudocode is quite close to
Python.

Bin Search(L, Item)
INPUT: A list L with items in nondecreasing order
OUTPUT: True or False depending on whether Item is in L
if Length(L) ≤ 1

if Length(L) == 1 and L[0] == Item
return True

else
return False

else
Mid = Floor(Length(L) / 2)
if L[Mid] == Item

return True
else if L[Mid] > Item

return Bin Search(L[:Mid], Item)
else

return Bin Search(L[Mid+1:], Item)

CS 231: Pseudocode 4

3 Pseudocode style examples

Various styles of pseudocodes can be observed in these examples of the binary search algorithm.
Not all of these examples are worth emulating, as some are too detailed and some are hard to
understand.
Example 1 The Design and Analysis of Computer Algorithms, Aho, Hopcroft, and Ullman,
1974, page 114.

procedure SEARCH(a, f, `):
if f > ` then return "no"

else

if a = A[b(f+`)/2c] then return "yes"

else

if a < A[b(f+`)/2c] then

return SEARCH(a, f, b(f+`)/2c - 1)

else return SEARCH(a, b(f+`)/2c + 1, `)

Example 2 Algorithms, Robert Sedgewick, 1988, p. 198.

function binarysearch(v:integer):integer;

var x, `, r:integer;

begin

`:=1; r:=N;

repeat

x:=(`+r)div 2;

if v<a[x].key then r:=x-1 else `:=x+1
until (v=a[x].key) or (` >r);
if v=a[x].key

then binarysearch:=x

else binarysearch:=N + 1

end;

Example 3 Data Structures and Their Algorithms, Lewis and Denenberg, 1991, p. 182.

function BinarySearchLoopUp(key K, table T[0..n-1]): info

{Return information stored with key K in T, or Λ if K is not T}
Left ← 0

Right ← n-1

repeat forever

if Right < Left then

return Λ
else

Middle ← b (Left + Right)/2 c
if K = Key(T[Middle]) then return info(T[Middle])

CS 231: Pseudocode 5

else if K < Key(T[Middle]) then Right ← Middle - 1

else Left ← Middle + 1

Example 4 Computer Algorithms: Introduction to Design and Analysis, Baase and Van Gelder,
2000, p. 129

int binarySearch(int[], E, int first, int last, int K)

if (last < first)

index = -1;

else

int mid - (first + last)/2;

if (K == E[mid])

index = mid;

else if (K < E[mid])

index = binarySearch(E, first, mid-1, K);

else

index = binarySearch(E, mid+1, last, K);

return index;

