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1 Exponent Laws
1. log,a = Qo

Proof. Let x = log, a < b = a. Then we have

b = «a
In(b*) = Ina
zlnb = Ina

; - ma

~ Inb
log,a = 1n_a

B =

2 Geometric Series

Reproduced from CS 240 Module 01, Slide 42:

"—1
. arr—l eO(r™ ) ifr>1
a/ri = na S @(Tl) ifr=1
i=0 1—7r"
a " eo(1) ifo<r<1.
—r

3 Analysis

Definition 3.1. f(n) € O(g(n)) if there exist constants ¢ > 0 and ng > 0
such that 0 < f(n) < c-g(n) for all n > ny.

Definition 3.2. f(n) € Q(g(n)) if there exist constants ¢ > 0 and ng > 0
such that 0 < c- g(n) < f(n) for all n > ny.

Remarks:

1. f(n) € Q(g(n)) if and only if g(n) € O(f(n)) (just take the reciprocal
of the constant, and the same ny).

Definition 3.3. f(n) € O(g(n)) if there exist constants c1,cy > 0 and ng > 0
such that 0 < ¢y -g(n) < f(n) <cy-g(n) for alln > ng.
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Remarks:
1. f(n) € ©(g(n)) < f(n) € Olg(n)) and f(n) € Ag(n)) .
Useful Facts:
1. log,(n) € ©(logn) for all b > 1. (Our convention will be that logn will
mean log, n.) Proved in CS 240 Lecture Notes and, more elegantly, in
the Beidl book.

Definition 3.4. f(n) € o(g(n)) if for all constants ¢ > 0, there exists ng > 0
such that 0 < f(n) < c-g(n) for all n > ny.

Definition 3.5. f(n) € w(g(n)) if g(n) € o(f(n)).

Relationships between Order Notations

L. f(n) € ©(g(n)) = g(n) € O(f(n))
2. f(n) € O(g(n)) & g(n) € Qf(n))
3. f(n) € o(g(n)) < g(n) € w(f(n))
4. f(n) € o(g(n)) = f(n) € O(g(n))
5. f(n) € o(g(n)) = f(n) ¢ Q(g(n))
6. f(n) € w(g(n)) = f(n) € Qg(n))
7. f(n) € w(g(n)) = f(n) ¢ O(g(n))

Algebra of Order Notations
1. Identity Rule: f(n) € ©(f(n))
2. Maximum Rules: Suppose that f(n) > 0 and g(0) > 0 for all n > n,.

Then
(a) O(f(n) + g(n)) = O(max{f(n),g(n)}).
Q(max{f(n),g(n)}).

(b) Q(f(n) + g(n))
3. Transitivity:
(a) If f(n) € O(g(n)) and g(n) € O(h(n)), then f(n) € O(h(n)).
(b) I f(n) € Qg(n)) and g(n) € Q((n)), then f(n) € QAh(n)).
Techniques of Order Notations
1. Limit Rule: Suppose that f(n) > 0 and g(n) > 0 for all n > ny.
Suppose that

o
L= g(n)

, in particular, the limit exists.

Then
o(g(n)) if L=0
f(n) € { O(g(n)) if 0<L <o
w(g(n)) if L= oc.

Note: sufficient, not necessary.



Growth Rates

1. If f(n) € ©(g(n)), then the growth rates of f(n) and g(n) are the same.

2. If f(n) € o(g(n)), then the growth rate of f(n) is less than the growth
rate of g(n).

3. If f(n) € w(g(n)), then the growth rate of f(n) is greater than the
growth rate of g(n).

Useful Facts:

1. The growth rate of logn is less than the growth rate of n. Proved in
CS 240 Lecture Notes.

2. The growth rate of (logn)¢ is less than the growth rate of n?, where
c¢ > 0 and d > 0 are arbitrary real numbers. Proved in CS 240 Lecture
Notes.

Complexity of Algorithms
1. Worst-case complexity of an algorithm Add, if needed.
2. Average-case complexity of an algorithm Add, if needed.

Definition 3.6. f(n,m) € O(g(n,m)) if there ezist constants ¢ > 0 and
ng > 0,mgp > 0 such that 0 < f(n,m) < c-g(n.m) for all n > ny or m > my
(i.e. finitely many exceptions).

Remarks:
1. Weaker Definition: there exist constants ¢ > 0 and ng > 0, mg > 0 such
that 0 < f(n,m) < c- g(n.m) for all n > ny and m > m,.
2. It will not matter much which definition we use.
Recursive Relations (See CS 240, Module 01)

’ Recursion \ resolves to \ example ‘
T(n)=T(n/2)+ 6(1) T(n) € ©(logn) Binary search
T(n) =2T(n/2) + ©O(n) T(n) € ©(nlogn) | Mergesort
T(n)=2T(n/2) +O(logn) | T'(n) € O(n) Heapify (— later)
T(n) =T(en) + O(n) T(n) € ©(n) Selection
for some 0 < ¢ < 1 (— later)
T(n)=2T(n/4) +O(1) T(n) € ©(yv/n) Range Search
(— later)
T(n)=T(/n)+6(1) T(n) € ©(loglogn) | Interpolation Search
(— later)

MergeSort Reference: See the Beidl book, CS 240E detailed analysis of
MergeSort.



Lemma 3.7. For any constant r > 1, f(n) € ©(r"~1) if and only if f(n) €
O(rm).

Proof. 1. Forward direction Assume f(n) € ©(r"1).
(a) Since f(n) € ©(r"!), we have
i. ¢1,ny such that f(n) < c;r™ ! for all n > ny, and
ii. ¢y, M9 such that cor™™t < f(n), for all n > ne.
(b) From|L(a)i, f(n) < (&) r", for all n > n;.
(¢) From [I(a)ii (2)r™ < f(n), for all n > ny.
(d) Hence f(n) € ©(r™) as claimed.
2. Backward direction This is clear enough from the forward direction, I
think.

]

4 Heaps

1. Refer to CS 240, Module 2, Section on Binary Heaps.
2. Quick Summary: A heap is a binary tree with the following properties:
(a) Structural Property: All the levels of a heap are completely
filled, except (possibly) for the last level. The filled items in the
last level are left-justified.
(b) Heap Order Property: For any node i, the key of the parent
of 7 is larger than or equal to key of .
The full name for this is max-oriented binary heap.
Task: Make this into a proper definition, when time permits.

5 Randomized Algorithms

1. Refer to CS 240, Module 3, Section on Randomized Algorithms.

6 Dictionary Using Ordered Linked List

1. Refer to CS 240, Module 4, Section on ADT Dictionary.
2. Quick Summary: Ordering the array improves search from ©(n) to
O(logn), compared against the unordered option.
Task: Make this into a proper definition, when time permits.




7 AVL Trees

1. Refer to CS 240, Module 4, Section on AVL Trees.
2. Quick Summary: An AVL is a BST, with the additional balance prop-
erty that the heights of the left and right subtrees can differ by at most
1.
Task: Make this into a proper definition, when time permits.

8 Tries

1. Refer to CS 240, Module 6, Section on Tries.
2. Quick Summary: A Trie is a radix tree (label each edge with the ap-
propriate character).
Task: Make this into a proper definition, when time permits.

9 KD Trees

1. Refer to CS 240, Module 8, Section on KD Trees.
2. Quick Summary: A KD Tree is a binary tree, which has roughly half
of its points in each subtree, at each level.
Task: Make this into a proper definition, when time permits.

10 Huffman Trees

1. Refer to CS 240, Module 10, Section on Huffman Trees.
2. Quick Summary: A Huffman Tree is a tree, to store an encoding,
which will produce the minimum length of coded words, I think.
Task: Make this into a proper definition, when time permits.

11 Graphs

Notation: A DAG is a directed acyclic graph.
A Hamiltonian Path is a path that visits each vertex exactly once.
A Hamiltonian Cycle is a cycle that is also a Hamiltonian path.



12 Fibonacci Numbers

When time permits, copy/move the stuff from Lecture 07 about the Fibonacci
numbers and the Golden Ratio.
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