CS 341 Background Information

Collin Roberts

January 15, 2025

Contents

1	Exponent Laws	1
2	Geometric Series	2
3	Analysis	2
4	Heaps	5
5	Randomized Algorithms	5
6	Dictionary Using Ordered Linked List	5
7	AVL Trees	6
8	Tries	6
9	KD Trees	6
10	Huffman Trees	6
11	Graphs	6
12	Fibonacci Numbers	7

1 Exponent Laws

$$1. \ \log_b a = \frac{\ln a}{\ln b}$$

Proof. Let $x = \log_b a \Leftrightarrow b^x = a$. Then we have

$$b^{x} = a$$

$$\ln(b^{x}) = \ln a$$

$$x \ln b = \ln a$$

$$x = \frac{\ln a}{\ln b}$$

$$\log_{b} a = \frac{\ln a}{\ln b}$$

2 Geometric Series

Reproduced from CS 240 Module 01, Slide 42:

$$\sum_{i=0}^{n-1} a r^i = \begin{cases} a \frac{r^n - 1}{r - 1} & \in \Theta(r^{n-1}) & \text{if } r > 1 \\ na & \in \Theta(n) & \text{if } r = 1 \\ a \frac{1 - r^n}{1 - r} & \in \Theta(1) & \text{if } 0 < r < 1. \end{cases}$$

3 Analysis

Definition 3.1. $f(n) \in O(g(n))$ if there exist constants c > 0 and $n_0 > 0$ such that $0 \le f(n) \le c \cdot g(n)$ for all $n \ge n_0$.

Definition 3.2. $f(n) \in \Omega(g(n))$ if there exist constants c > 0 and $n_0 > 0$ such that $0 \le c \cdot g(n) \le f(n)$ for all $n \ge n_0$.

Remarks:

1. $f(n) \in \Omega(g(n))$ if and only if $g(n) \in O(f(n))$ (just take the reciprocal of the constant, and the same n_0).

Definition 3.3. $f(n) \in \Theta(g(n))$ if there exist constants $c_1, c_2 > 0$ and $n_0 > 0$ such that $0 \le c_1 \cdot g(n) \le f(n) \le c_2 \cdot g(n)$ for all $n \ge n_0$.

Remarks:

1. $f(n) \in \Theta(g(n)) \Leftrightarrow f(n) \in O(g(n))$ and $f(n) \in \Omega(g(n))$.

Useful Facts:

1. $\log_b(n) \in \Theta(\log n)$ for all b > 1. (Our convention will be that $\log n$ will mean $\log_2 n$.) Proved in CS 240 Lecture Notes and, more elegantly, in the Beidl book.

Definition 3.4. $f(n) \in o(g(n))$ if for all constants c > 0, there exists $n_0 > 0$ such that $0 \le f(n) \le c \cdot g(n)$ for all $n \ge n_0$.

Definition 3.5. $f(n) \in \omega(g(n))$ if $g(n) \in o(f(n))$.

Relationships between Order Notations

- 1. $f(n) \in \Theta(g(n)) \Leftrightarrow g(n) \in \Theta(f(n))$
- 2. $f(n) \in O(g(n)) \Leftrightarrow g(n) \in \Omega(f(n))$
- 3. $f(n) \in o(g(n)) \Leftrightarrow g(n) \in \omega(f(n))$
- 4. $f(n) \in o(g(n)) \Rightarrow f(n) \in O(g(n))$
- 5. $f(n) \in o(g(n)) \Rightarrow f(n) \notin \Omega(g(n))$
- 6. $f(n) \in \omega(g(n)) \Rightarrow f(n) \in \Omega(g(n))$
- 7. $f(n) \in \omega(g(n)) \Rightarrow f(n) \notin O(g(n))$

Algebra of Order Notations

- 1. Identity Rule: $f(n) \in \Theta(f(n))$
- 2. Maximum Rules: Suppose that f(n) > 0 and g(0) > 0 for all $n \ge n_0$. Then
 - (a) $O(f(n) + g(n)) = O(\max\{f(n), g(n)\}).$
 - (b) $\Omega(f(n) + g(n)) = \Omega(\max\{f(n), g(n)\}).$
- 3. Transitivity:
 - $\overline{(a)}$ If $f(n) \in O(g(n))$ and $g(n) \in O(h(n))$, then $f(n) \in O(h(n))$.
 - (b) If $f(n) \in \Omega(g(n))$ and $g(n) \in \Omega(h(n))$, then $f(n) \in \Omega(h(n))$.

Techniques of Order Notations

1. <u>Limit Rule:</u> Suppose that f(n) > 0 and g(n) > 0 for all $n > n_0$. Suppose that

$$L = \lim_{n \to \infty} \frac{f(n)}{g(n)}$$
, in particular, the limit exists.

Then

$$f(n) \in \begin{cases} o(g(n)) & \text{if } L = 0\\ \Theta(g(n)) & \text{if } 0 < L < \infty\\ \omega(g(n)) & \text{if } L = \infty. \end{cases}$$

Note: sufficient, not necessary.

Growth Rates

- 1. If $f(n) \in \Theta(g(n))$, then the growth rates of f(n) and g(n) are the same.
- 2. If $f(n) \in o(g(n))$, then the growth rate of f(n) is less than the growth rate of g(n).
- 3. If $f(n) \in \omega(g(n))$, then the growth rate of f(n) is greater than the growth rate of g(n).

Useful Facts:

- 1. The growth rate of $\log n$ is less than the growth rate of n. Proved in CS 240 Lecture Notes.
- 2. The growth rate of $(\log n)^c$ is less than the growth rate of n^d , where c>0 and d>0 are arbitrary real numbers. Proved in CS 240 Lecture Notes.

Complexity of Algorithms

- 1. Worst-case complexity of an algorithm Add, if needed.
- 2. Average-case complexity of an algorithm Add, if needed.

Definition 3.6. $f(n,m) \in O(g(n,m))$ if there exist constants c > 0 and $n_0 > 0, m_0 > 0$ such that $0 \le f(n,m) \le c \cdot g(n.m)$ for all $n \ge n_0$ or $m \ge m_0$ (i.e. finitely many exceptions).

Remarks:

- 1. Weaker Definition: there exist constants c > 0 and $n_0 > 0$, $m_0 > 0$ such that $0 \le f(n, m) \le c \cdot g(n.m)$ for all $n \ge n_0$ and $m \ge m_0$.
- 2. It will not matter much which definition we use.

Recursive Relations (See CS 240, Module 01)

Recursion	resolves to	example
$T(n) = T(n/2) + \Theta(1)$	$T(n) \in \Theta(\log n)$	Binary search
$T(n) = 2T(n/2) + \Theta(n)$	$T(n) \in \Theta(n \log n)$	Mergesort
$T(n) = 2T(n/2) + \Theta(\log n)$	$T(n) \in \Theta(n)$	Heapify $(\rightarrow later)$
$T(n) = T(cn) + \Theta(n)$	$T(n) \in \Theta(n)$	Selection
for some $0 < c < 1$		$(\rightarrow later)$
$T(n) = 2T(n/4) + \Theta(1)$	$T(n) \in \Theta(\sqrt{n})$	Range Search
		$(\rightarrow later)$
$T(n) = T(\sqrt{n}) + \Theta(1)$	$T(n) \in \Theta(\log \log n)$	Interpolation Search
		$(\rightarrow later)$

MergeSort Reference: See the Beidl book, CS 240E detailed analysis of MergeSort.

Lemma 3.7. For any constant r > 1, $f(n) \in \Theta(r^{n-1})$ if and only if $f(n) \in \Theta(r^{n-1})$ $\Theta(r^n)$.

Proof. 1. Forward direction Assume $f(n) \in \Theta(r^{n-1})$.

- (a) Since $f(n) \in \Theta(r^{n-1})$, we have
 - i. c_1, n_1 such that $f(n) \leq c_1 r^{n-1}$, for all $n \geq n_1$, and ii. c_2, n_2 such that $c_2 r^{n-1} \leq f(n)$, for all $n \geq n_2$.
- (b) From 1(a)i, $f(n) \leq \left(\frac{c_1}{r}\right) r^n$, for all $n \geq n_1$.
- (c) From 1(a)ii, $\left(\frac{c_2}{r}\right)r^n \leq f(n)$, for all $n \geq n_1$.
- (d) Hence $f(n) \in \Theta(r^n)$ as claimed.
- 2. Backward direction This is clear enough from the forward direction, I think.

Heaps 4

- 1. Refer to CS 240, Module 2, Section on Binary Heaps.
- 2. Quick Summary: A heap is a binary tree with the following properties:
 - (a) Structural Property: All the levels of a heap are completely filled, except (possibly) for the last level. The filled items in the last level are left-justified.
 - (b) **Heap Order Property:** For any node i, the key of the parent of i is larger than or equal to key of i.

The full name for this is max-oriented binary heap.

Task: Make this into a proper definition, when time permits.

5 Randomized Algorithms

1. Refer to CS 240, Module 3, Section on Randomized Algorithms.

6 Dictionary Using Ordered Linked List

- 1. Refer to CS 240, Module 4, Section on ADT Dictionary.
- 2. Quick Summary: Ordering the array improves search from $\Theta(n)$ to $\Theta(\log n)$, compared against the unordered option.

Task: Make this into a proper definition, when time permits.

7 AVL Trees

- 1. Refer to CS 240, Module 4, Section on AVL Trees.
- 2. Quick Summary: An **AVL** is a BST, with the additional balance property that the heights of the left and right subtrees can differ by at most

Task: Make this into a proper definition, when time permits.

8 Tries

- 1. Refer to CS 240, Module 6, Section on Tries.
- 2. Quick Summary: A **Trie** is a radix tree (label each edge with the appropriate character).

Task: Make this into a proper definition, when time permits.

9 KD Trees

- 1. Refer to CS 240, Module 8, Section on KD Trees.
- 2. Quick Summary: A **KD Tree** is a binary tree, which has roughly half of its points in each subtree, at each level.

Task: Make this into a proper definition, when time permits.

10 Huffman Trees

- 1. Refer to CS 240, Module 10, Section on Huffman Trees.
- 2. Quick Summary: A **Huffman Tree** is a tree, to store an encoding, which will produce the minimum length of coded words, I think.

Task: Make this into a proper definition, when time permits.

11 Graphs

Notation: A DAG is a directed acyclic graph.

A **Hamiltonian Path** is a path that visits each vertex exactly once.

A Hamiltonian Cycle is a cycle that is also a Hamiltonian path.

12 Fibonacci Numbers

When time permits, copy/move the stuff from Lecture 07 about the Fibonacci numbers and the $\bf Golden\ Ratio$.