
CS 341
Background Information

Collin Roberts

January 15, 2025

Contents

1 Exponent Laws 1

2 Geometric Series 2

3 Analysis 2

4 Heaps 5

5 Randomized Algorithms 5

6 Dictionary Using Ordered Linked List 5

7 AVL Trees 6

8 Tries 6

9 KD Trees 6

10 Huffman Trees 6

11 Graphs 6

12 Fibonacci Numbers 7

1



1 Exponent Laws

1. logb a = ln a
ln b

Proof. Let x = logb a ⇔ bx = a. Then we have

bx = a

ln (bx) = ln a

x ln b = ln a

x =
ln a

ln b

logb a =
ln a

ln b
.

2 Geometric Series

Reproduced from CS 240 Module 01, Slide 42:

n−1∑
i=0

a ri =


a
rn − 1

r − 1
∈ Θ(rn−1) if r > 1

na ∈ Θ(n) if r = 1

a
1− rn

1− r
∈ Θ(1) if 0 < r < 1.

3 Analysis

Definition 3.1. f(n) ∈ O(g(n)) if there exist constants c > 0 and n0 > 0
such that 0 ≤ f(n) ≤ c · g(n) for all n ≥ n0.

Definition 3.2. f(n) ∈ Ω(g(n)) if there exist constants c > 0 and n0 > 0
such that 0 ≤ c · g(n) ≤ f(n) for all n ≥ n0.

Remarks:
1. f(n) ∈ Ω(g(n)) if and only if g(n) ∈ O(f(n)) (just take the reciprocal

of the constant, and the same n0).

Definition 3.3. f(n) ∈ Θ(g(n)) if there exist constants c1, c2 > 0 and n0 > 0
such that 0 ≤ c1 · g(n) ≤ f(n) ≤ c2 · g(n) for all n ≥ n0.

2



Remarks:
1. f(n) ∈ Θ(g(n)) ⇔ f(n) ∈ O(g(n)) and f(n) ∈ Ω(g(n)) .

Useful Facts:
1. logb(n) ∈ Θ(log n) for all b > 1. (Our convention will be that log n will

mean log2 n.) Proved in CS 240 Lecture Notes and, more elegantly, in
the Beidl book.

Definition 3.4. f(n) ∈ o(g(n)) if for all constants c > 0, there exists n0 > 0
such that 0 ≤ f(n) ≤ c · g(n) for all n ≥ n0.

Definition 3.5. f(n) ∈ ω(g(n)) if g(n) ∈ o(f(n)).

Relationships between Order Notations
1. f(n) ∈ Θ(g(n)) ⇔ g(n) ∈ Θ(f(n))
2. f(n) ∈ O(g(n)) ⇔ g(n) ∈ Ω(f(n))
3. f(n) ∈ o(g(n)) ⇔ g(n) ∈ ω(f(n))
4. f(n) ∈ o(g(n)) ⇒ f(n) ∈ O(g(n))
5. f(n) ∈ o(g(n)) ⇒ f(n) /∈ Ω(g(n))
6. f(n) ∈ ω(g(n)) ⇒ f(n) ∈ Ω(g(n))
7. f(n) ∈ ω(g(n)) ⇒ f(n) /∈ O(g(n))

Algebra of Order Notations
1. Identity Rule: f(n) ∈ Θ(f(n))
2. Maximum Rules: Suppose that f(n) > 0 and g(0) > 0 for all n ≥ n0.

Then
(a) O(f(n) + g(n)) = O(max{f(n), g(n)}).
(b) Ω(f(n) + g(n)) = Ω(max{f(n), g(n)}).

3. Transitivity:
(a) If f(n) ∈ O(g(n)) and g(n) ∈ O(h(n)), then f(n) ∈ O(h(n)).
(b) If f(n) ∈ Ω(g(n)) and g(n) ∈ Ω(h(n)), then f(n) ∈ Ω(h(n)).

Techniques of Order Notations
1. Limit Rule: Suppose that f(n) > 0 and g(n) > 0 for all n > n0.

Suppose that

L = lim
n→∞

f(n)

g(n)
, in particular, the limit exists.

Then

f(n) ∈


o(g(n)) if L = 0
Θ(g(n)) if 0 < L < ∞
ω(g(n)) if L = ∞.

Note: sufficient, not necessary.

3



Growth Rates
1. If f(n) ∈ Θ(g(n)), then the growth rates of f(n) and g(n) are the same.
2. If f(n) ∈ o(g(n)), then the growth rate of f(n) is less than the growth

rate of g(n).
3. If f(n) ∈ ω(g(n)), then the growth rate of f(n) is greater than the

growth rate of g(n).
Useful Facts:

1. The growth rate of log n is less than the growth rate of n. Proved in
CS 240 Lecture Notes.

2. The growth rate of (log n)c is less than the growth rate of nd, where
c > 0 and d > 0 are arbitrary real numbers. Proved in CS 240 Lecture
Notes.

Complexity of Algorithms
1. Worst-case complexity of an algorithm Add, if needed.
2. Average-case complexity of an algorithm Add, if needed.

Definition 3.6. f(n,m) ∈ O(g(n,m)) if there exist constants c > 0 and
n0 > 0,m0 > 0 such that 0 ≤ f(n,m) ≤ c · g(n.m) for all n ≥ n0 or m ≥ m0

(i.e. finitely many exceptions).

Remarks:
1. Weaker Definition: there exist constants c > 0 and n0 > 0,m0 > 0 such

that 0 ≤ f(n,m) ≤ c · g(n.m) for all n ≥ n0 and m ≥ m0.
2. It will not matter much which definition we use.

Recursive Relations (See CS 240, Module 01)

Recursion resolves to example

T (n) = T (n/2) + Θ(1) T (n) ∈ Θ(log n) Binary search
T (n) = 2T (n/2) + Θ(n) T (n) ∈ Θ(n log n) Mergesort
T (n) = 2T (n/2) + Θ(log n) T (n) ∈ Θ(n) Heapify (→ later)
T (n) = T (cn) + Θ(n) T (n) ∈ Θ(n) Selection
for some 0 < c < 1 (→ later)
T (n) = 2T (n/4) + Θ(1) T (n) ∈ Θ(

√
n) Range Search

(→ later)
T (n) = T (

√
n) + Θ(1) T (n) ∈ Θ(log log n) Interpolation Search

(→ later)

MergeSort Reference: See the Beidl book, CS 240E detailed analysis of
MergeSort.

4



Lemma 3.7. For any constant r > 1, f(n) ∈ Θ(rn−1) if and only if f(n) ∈
Θ(rn).

Proof. 1. Forward direction Assume f(n) ∈ Θ(rn−1).
(a) Since f(n) ∈ Θ(rn−1), we have

i. c1, n1 such that f(n) ≤ c1r
n−1, for all n ≥ n1, and

ii. c2, n2 such that c2r
n−1 ≤ f(n), for all n ≥ n2.

(b) From 1(a)i, f(n) ≤
(
c1
r

)
rn, for all n ≥ n1.

(c) From 1(a)ii,
(
c2
r

)
rn ≤ f(n), for all n ≥ n1.

(d) Hence f(n) ∈ Θ(rn) as claimed.
2. Backward direction This is clear enough from the forward direction, I

think.

4 Heaps

1. Refer to CS 240, Module 2, Section on Binary Heaps.
2. Quick Summary: A heap is a binary tree with the following properties:

(a) Structural Property: All the levels of a heap are completely
filled, except (possibly) for the last level. The filled items in the
last level are left-justified.

(b) Heap Order Property: For any node i, the key of the parent
of i is larger than or equal to key of i.

The full name for this is max-oriented binary heap.
Task: Make this into a proper definition, when time permits.

5 Randomized Algorithms

1. Refer to CS 240, Module 3, Section on Randomized Algorithms.

6 Dictionary Using Ordered Linked List

1. Refer to CS 240, Module 4, Section on ADT Dictionary.
2. Quick Summary: Ordering the array improves search from Θ(n) to

Θ(log n), compared against the unordered option.
Task: Make this into a proper definition, when time permits.

5



7 AVL Trees

1. Refer to CS 240, Module 4, Section on AVL Trees.
2. Quick Summary: An AVL is a BST, with the additional balance prop-

erty that the heights of the left and right subtrees can differ by at most
1.

Task: Make this into a proper definition, when time permits.

8 Tries

1. Refer to CS 240, Module 6, Section on Tries.
2. Quick Summary: A Trie is a radix tree (label each edge with the ap-

propriate character).
Task: Make this into a proper definition, when time permits.

9 KD Trees

1. Refer to CS 240, Module 8, Section on KD Trees.
2. Quick Summary: A KD Tree is a binary tree, which has roughly half

of its points in each subtree, at each level.
Task: Make this into a proper definition, when time permits.

10 Huffman Trees

1. Refer to CS 240, Module 10, Section on Huffman Trees.
2. Quick Summary: A Huffman Tree is a tree, to store an encoding,

which will produce the minimum length of coded words, I think.
Task: Make this into a proper definition, when time permits.

11 Graphs

Notation: A DAG is a directed acyclic graph.
A Hamiltonian Path is a path that visits each vertex exactly once.
A Hamiltonian Cycle is a cycle that is also a Hamiltonian path.

6



12 Fibonacci Numbers

When time permits, copy/move the stuff from Lecture 07 about the Fibonacci
numbers and the Golden Ratio.

7


	Exponent Laws
	Geometric Series
	Analysis
	Heaps
	Randomized Algorithms
	Dictionary Using Ordered Linked List
	AVL Trees
	Tries
	KD Trees
	Huffman Trees
	Graphs
	Fibonacci Numbers

