CS 341
Background Information

Collin Roberts
January 15, 2025

Contents

[1 Exponent Laws|

e = Sorics
3 Analysis

[Randomized Algorithms|

[6 Dictionary Using Ordered Linked List|

[T_AVT Trees
8 Tried

9 KD Treed
(10 Huffman Trees|
(12 Fibonacci Numbers|

1 Exponent Laws
1. log,a = Qo

Proof. Let x = log, a < b = a. Then we have

b = «a
In(b*) = Ina
zlnb = Ina

; - ma

~ Inb
log,a = 1n_a

B =

2 Geometric Series

Reproduced from CS 240 Module 01, Slide 42:

"—1
. arr—l eO(r™) ifr>1
a/ri = na S @(Tl) ifr=1
i=0 1—7r"
a " eo(1) ifo<r<1.
—r

3 Analysis

Definition 3.1. f(n) € O(g(n)) if there exist constants ¢ > 0 and ng > 0
such that 0 < f(n) < c-g(n) for all n > ny.

Definition 3.2. f(n) € Q(g(n)) if there exist constants ¢ > 0 and ng > 0
such that 0 < c- g(n) < f(n) for all n > ny.

Remarks:

1. f(n) € Q(g(n)) if and only if g(n) € O(f(n)) (just take the reciprocal
of the constant, and the same ny).

Definition 3.3. f(n) € O(g(n)) if there exist constants c1,cy > 0 and ng > 0
such that 0 < ¢y -g(n) < f(n) <cy-g(n) for alln > ng.

2

Remarks:
1. f(n) € ©(g(n)) < f(n) € Olg(n)) and f(n) € Ag(n)) .
Useful Facts:
1. log,(n) € ©(logn) for all b > 1. (Our convention will be that logn will
mean log, n.) Proved in CS 240 Lecture Notes and, more elegantly, in
the Beidl book.

Definition 3.4. f(n) € o(g(n)) if for all constants ¢ > 0, there exists ng > 0
such that 0 < f(n) < c-g(n) for all n > ny.

Definition 3.5. f(n) € w(g(n)) if g(n) € o(f(n)).

Relationships between Order Notations

L. f(n) € ©(g(n)) = g(n) € O(f(n))
2. f(n) € O(g(n)) & g(n) € Qf(n))
3. f(n) € o(g(n)) < g(n) € w(f(n))
4. f(n) € o(g(n)) = f(n) € O(g(n))
5. f(n) € o(g(n)) = f(n) ¢ Q(g(n))
6. f(n) € w(g(n)) = f(n) € Qg(n))
7. f(n) € w(g(n)) = f(n) ¢ O(g(n))

Algebra of Order Notations
1. Identity Rule: f(n) € ©(f(n))
2. Maximum Rules: Suppose that f(n) > 0 and g(0) > 0 for all n > n,.

Then
(a) O(f(n) + g(n)) = O(max{f(n),g(n)}).
Q(max{f(n),g(n)}).

(b) Q(f(n) + g(n))
3. Transitivity:
(a) If f(n) € O(g(n)) and g(n) € O(h(n)), then f(n) € O(h(n)).
(b) I f(n) € Qg(n)) and g(n) € Q((n)), then f(n) € QAh(n)).
Techniques of Order Notations
1. Limit Rule: Suppose that f(n) > 0 and g(n) > 0 for all n > ny.
Suppose that

o
L= g(n)

, in particular, the limit exists.

Then
o(g(n)) if L=0
f(n) € { O(g(n)) if 0<L <o
w(g(n)) if L= oc.

Note: sufficient, not necessary.

Growth Rates

1. If f(n) € ©(g(n)), then the growth rates of f(n) and g(n) are the same.

2. If f(n) € o(g(n)), then the growth rate of f(n) is less than the growth
rate of g(n).

3. If f(n) € w(g(n)), then the growth rate of f(n) is greater than the
growth rate of g(n).

Useful Facts:

1. The growth rate of logn is less than the growth rate of n. Proved in
CS 240 Lecture Notes.

2. The growth rate of (logn)¢ is less than the growth rate of n?, where
c¢ > 0 and d > 0 are arbitrary real numbers. Proved in CS 240 Lecture
Notes.

Complexity of Algorithms
1. Worst-case complexity of an algorithm Add, if needed.
2. Average-case complexity of an algorithm Add, if needed.

Definition 3.6. f(n,m) € O(g(n,m)) if there ezist constants ¢ > 0 and
ng > 0,mgp > 0 such that 0 < f(n,m) < c-g(n.m) for all n > ny or m > my
(i.e. finitely many exceptions).

Remarks:
1. Weaker Definition: there exist constants ¢ > 0 and ng > 0, mg > 0 such
that 0 < f(n,m) < c- g(n.m) for all n > ny and m > m,.
2. It will not matter much which definition we use.
Recursive Relations (See CS 240, Module 01)

’ Recursion \ resolves to \ example ‘
T(n)=T(n/2)+ 6(1) T(n) € ©(logn) Binary search
T(n) =2T(n/2) + ©O(n) T(n) € ©(nlogn) | Mergesort
T(n)=2T(n/2) +O(logn) | T'(n) € O(n) Heapify (— later)
T(n) =T(en) + O(n) T(n) € ©(n) Selection
for some 0 < ¢ < 1 (— later)
T(n)=2T(n/4) +O(1) T(n) € ©(yv/n) Range Search
(— later)
T(n)=T(/n)+6(1) T(n) € ©(loglogn) | Interpolation Search
(— later)

MergeSort Reference: See the Beidl book, CS 240E detailed analysis of
MergeSort.

Lemma 3.7. For any constant r > 1, f(n) € ©(r"~1) if and only if f(n) €
O(rm).

Proof. 1. Forward direction Assume f(n) € ©(r"1).
(a) Since f(n) € ©(r"!), we have
i. ¢1,ny such that f(n) < c;r™ ! for all n > ny, and
ii. ¢y, M9 such that cor™™t < f(n), for all n > ne.
(b) From|L(a)i, f(n) < (&) r", for all n > n;.
(¢) From [I(a)ii (2)r™ < f(n), for all n > ny.
(d) Hence f(n) € ©(r™) as claimed.
2. Backward direction This is clear enough from the forward direction, I
think.

]

4 Heaps

1. Refer to CS 240, Module 2, Section on Binary Heaps.
2. Quick Summary: A heap is a binary tree with the following properties:
(a) Structural Property: All the levels of a heap are completely
filled, except (possibly) for the last level. The filled items in the
last level are left-justified.
(b) Heap Order Property: For any node i, the key of the parent
of 7 is larger than or equal to key of .
The full name for this is max-oriented binary heap.
Task: Make this into a proper definition, when time permits.

5 Randomized Algorithms

1. Refer to CS 240, Module 3, Section on Randomized Algorithms.

6 Dictionary Using Ordered Linked List

1. Refer to CS 240, Module 4, Section on ADT Dictionary.
2. Quick Summary: Ordering the array improves search from ©(n) to
O(logn), compared against the unordered option.
Task: Make this into a proper definition, when time permits.

7 AVL Trees

1. Refer to CS 240, Module 4, Section on AVL Trees.
2. Quick Summary: An AVL is a BST, with the additional balance prop-
erty that the heights of the left and right subtrees can differ by at most
1.
Task: Make this into a proper definition, when time permits.

8 Tries

1. Refer to CS 240, Module 6, Section on Tries.
2. Quick Summary: A Trie is a radix tree (label each edge with the ap-
propriate character).
Task: Make this into a proper definition, when time permits.

9 KD Trees

1. Refer to CS 240, Module 8, Section on KD Trees.
2. Quick Summary: A KD Tree is a binary tree, which has roughly half
of its points in each subtree, at each level.
Task: Make this into a proper definition, when time permits.

10 Huffman Trees

1. Refer to CS 240, Module 10, Section on Huffman Trees.
2. Quick Summary: A Huffman Tree is a tree, to store an encoding,
which will produce the minimum length of coded words, I think.
Task: Make this into a proper definition, when time permits.

11 Graphs

Notation: A DAG is a directed acyclic graph.
A Hamiltonian Path is a path that visits each vertex exactly once.
A Hamiltonian Cycle is a cycle that is also a Hamiltonian path.

12 Fibonacci Numbers

When time permits, copy/move the stuff from Lecture 07 about the Fibonacci
numbers and the Golden Ratio.

	Exponent Laws
	Geometric Series
	Analysis
	Heaps
	Randomized Algorithms
	Dictionary Using Ordered Linked List
	AVL Trees
	Tries
	KD Trees
	Huffman Trees
	Graphs
	Fibonacci Numbers

