
CS 341
Lecture Notes
Winter 2025

Collin Roberts

January 16, 2025

Contents

1 Lecture 01 - Introduction, review of asymptotics 5
1.1 Course Intro . 5
1.2 Slide 09 . 5
1.3 Slide 10 . 5
1.4 Slide 13 Exercise . 6
1.5 Slide 14 Exercise . 6
1.6 Slide 16 . 6
1.7 Slide 17 . 6
1.8 Slide 18 . 7
1.9 Slide 19 . 7
1.10 Slide 21 . 7
1.11 Slide 22 . 7
1.12 Slide 24 . 7
1.13 Notes and Tasks from the Lecture 7

2 Lecture 02 - Solving recurrences 8
2.1 Slide 03 . 8
2.2 Slide 07 . 9
2.3 Slide 08 . 10
2.4 Slide 10 . 10
2.5 Slide 11 . 11

1

2.6 Slide 12 . 11
2.7 Notes and Tasks from the Lecture 12

3 Lecture 03 - Divide and conquer I 12
3.1 Slide 04 . 12
3.2 Slide 06 . 13
3.3 Slide 08 . 13
3.4 Slide 09 . 14
3.5 Slide 10 . 14
3.6 Slide 11 . 15
3.7 Slide 12 . 15
3.8 Slide 13 . 15
3.9 Slide 14 . 16
3.10 Slide 16 . 17
3.11 Slide 17 . 17
3.12 Notes and Tasks from the Lecture 17

4 Lecture 04 - Divide and conquer II 18
4.1 Slide 03 . 18
4.2 Slide 05 . 19
4.3 Slide 07 . 19
4.4 Slide 08 . 19
4.5 Slide 09 . 20
4.6 Slide 12 . 20
4.7 Notes and Tasks from the Lecture 20

5 Lecture 05 - Divide and conquer III 21
5.1 Rough Plan, To Be Fleshed Out 21

6 Lecture 06 - Graphs algorithms I - breadth first search 22
6.1 Lecture Content . 22

7 Lecture 07 - Graph algorithms II - depth-first search 23
7.1 Lecture Content . 23
7.2 Tasks . 23

8 Lecture 08 - Graph algorithms III - Directed graphs 24
8.1 Lecture Content . 24

2

9 Lecture 09 - Graph algorithms IV - Dijkstra’s algorithm 24
9.1 Lecture Content . 24

10 Lecture 10 - Graph algorithms V - Minimum spanning trees 24
10.1 Bellman-Ford Algorithm . 24
10.2 Floyd-Warshall Algorithm . 24
10.3 Slide 17 . 25
10.4 Slide 18 . 25

11 Lecture 11 - Greedy algorithms I 25

12 Lecture 12 - Greedy algorithms II 25

13 Lecture 13 - Greedy algorithms III 26

14 Lecture 14 - Dynamic Programming I 26
14.1 Slide 02 . 26
14.2 Slide 04 . 26
14.3 Slide 10 . 27
14.4 Slide 11 . 27
14.5 Slide 12 . 27
14.6 Slide 14 . 27
14.7 Slide 15 . 27
14.8 Slide 16 . 27

15 Lecture 15 - Dynamic programming II 28

16 Lecture 16 - Dynamic programming III 28

17 Lecture 17 - Dynamic programming IV 28

18 Lecture 18 - Reductions 28

19 Lecture 19 - Reductions, P, NP, co-NP 28

20 Lecture 20 - NP-completeness 29

21 Lecture 21 - NP-completeness 29

22 Lecture 22 - NP-Completeness 30

3

23 Lecture 23 - NP-Completeness 30

24 Lecture 24 - Misc 30

25 Lecture 25 - Max flow 30
25.1 Max Flow . 30

26 Lecture 26 - Max flow = Min cut 32

27 Lecture 27 - Applications of Flows and Cuts 32

4

1 Lecture 01 - Introduction, review of asymp-

totics

1.1 Course Intro

1. ISC: Sylvie Davies.
2. Textbooks

(a) CLRS = Introduction to Algorithms by Cormen, Leierson,
Rivest, Stein

(b) KT = Algorithm Design by Kleinberg, Tardos
(c) DPV = Algorithms by Dasgupta, Papadimitriou, Vazirani

1.2 Slide 09

1. Bullet 3 is the Limit Rule, say from CS 240.

1.3 Slide 10

Examples True or False?
1. 2n−1 ∈ Θ(2n)?

True.
(a) 2n−1 ∈ O(2n): c = 1, n0 = 1 works.
(b) 2n−1 ∈ Ω(2n): c = 1

2
, n0 = 1 works.

Alternatively, just apply a Lemma from the CS 341 Background Infor-
mation.

2. (n− 1)! ∈ Θ(n!)?
False.
(a) (n− 1)! ∈ O(n!) holds: c = 1, n0 = 1 works.
(b) (n− 1)! ∈ Ω(n!) does not hold: Towards a contradiction, suppose

that constants c and n0 satisfy the definition. Choose an arbitrary
n such that n > n0 and n > 1

c
. Then we have

c · n!
= c · n · (n− 1)!

> c · 1
c
· (n− 1)!

= (n− 1)!,

which is a contradiction.

5

1.4 Slide 13 Exercise

1. Cost of the Sum Routine:
(a) The for loop executes n times.
(b) Each loop iteration requires O(1)︸︷︷︸

access A[i]

+O(1)︸︷︷︸
+

time.

(c) So we get O(n) in total.

1.5 Slide 14 Exercise

1. Cost of the Product Routine:
(a) If multiplication is a basic operation, then this is the same as the

sum routine.
(b) If multiplication is not basic, but must instead be implemented

using addition, then it will be O(n2).

1.6 Slide 16

1. The problem stated here is solved (partially - we only return the sum,
not the bounds that created it) in the following ways on the subsequent
slides. Note that the run time improves as we go. We will explain each
of these techniques, later in the course.
(a) Brute force: 17-19
(b) Divide-and-conquer: 20-22
(c) Dynamic Programming: 23-25

2. We adopt the stated Convention to keep our notation as clean as pos-
sible in what follows, and not need to handle empty cases separately.

1.7 Slide 17

1. Per Armin’s note, Slide 17 is not actually a solution. this is a useless
pseudocode which does nothing. They have potentially seen this in
CS240 as is. In the first module of CS240, this was used to show them
how they can find the runtime of nested loops. There exists a reference
if you look at my lecture plan.

6

1.8 Slide 18

1. Should all the matrix entries be negative, this algorithm will return 0.
This is correct: a sum of 0 is realized by the empty sub-array.

2. The Θ(n3) runtime is clear from the structure of the code.

1.9 Slide 19

1. The Θ(n2) runtime is clear from the structure of the improved code.

1.10 Slide 21

1. This entire slide is to handle Case 3 from the previous slide; Cases 1 and
2 are trivial. This explains why the right boundary entry are included in
MaximizeLowerHalf (and, symmetrically, why the left boundary entry
would be included in MaximizeUpperHalf).

1.11 Slide 22

1. I tried, and failed, to understand Beidl’s “bare hands” proof that the
Divide-And-Conquer version of Maximum Subarray’s worst case run
time (same as MergeSort’s worst case run time) lies in Θ(n log n).

2. Every other source, including CS 341 itself, relies on a recursion tree.
3. From now on, so shall I.

1.12 Slide 24

1. The boxed pseudo-code computes M(n).

1.13 Notes and Tasks from the Lecture

1. Notes
(a) Answer to the Question, is the W25 offering the same as the F24

offering: The topics will be mostly the same. The one exception is
that the topic max-flow/min-cut was included during F24 but
will be omitted during W25.

(b) Slide 12 Explain better why the ∧-rule is less strict than the ∨-
rule. It is to do with the choice of C:

7

i. The first version (∨) makes it more difficult to fix a C, hence
it is more strict.

ii. The second version (∧) makes it easier to fix a C, hence it is
less strict.

2. Tasks
(a) Get Piazza set up and populdated for the W25 term, if it’s not

done already (touch base with Sylvie).
(b) Add a link to the unsecured website, to the LEARN site.
(c) Fix my screen timeout settings!
(d) Bring treats to class, from now on!
(e) Consistently include or exclude the Ericson textbook everywhere

(It’s mentioned in Armin’s slides, but not elsewhere, I think).
(f) Post to the course website:

i. Lecture Notes
ii. CS 341 Background Information

(g) Turn the Exercises into Clicker Questions, where possible.
(h) Start L02 with the problem stated on Slide 16, and its many so-

lutions.
(i) Announce: no tutorials on January 10; first tutorials will be on

January 17.
(j) When we start into dynamic programming later on, recall this last

example: it is a great example where, by adding some storage, and
remembering work already done, we can effectively cut down our
run-time.

2 Lecture 02 - Solving recurrences

2.1 Slide 03

Exercise: Prove that Tw(n) ≤ T (n) and T (n) is increasing (an easy induc-
tion).
Solution:

1. Proof that Tw(n) ≤ T (n), for all n ≥ 1:
(a) The proof is by induction on n ≥ 1.
(b) Base n = 1:

i. Tw(1) = d = T (1).
(c) Induction n > 1:

8

i. The induction hypothesis is that Tw(m) ≤ T (m), for all m <
n.

ii. Then

Tw(n)

≤ Tw
(⌈n

2

⌉)
+ Tw

(⌊n
2

⌋)
+ cn

≤︸︷︷︸
I.H.

T
(⌈n

2

⌉)
+ T

(⌊n
2

⌋)
+ cn

= T (n).

2. Proof that T (n) is increasing, for all n ≥ 1:
(a) We show that, for all n ≥ 1, T (n+ 1) > T (n).
(b) The proof is by induction on n ≥ 1.
(c) Base n = 1:

i.

T (1) = d

T (2) = T (1) + T (1) + cn

= d+ d+ cn

= 2d+ cn

> T (1),

since all quantities are positive.
(d) Induction n > 1:

i. The induction hypothesis is that T (m) > T (ℓ), for all m > ℓ.
ii. Then

T (n)

= T
(⌈n

2

⌉)
+ T

(⌊n
2

⌋)
+ cn

>︸︷︷︸
I.H.

T

(⌈
n− 1

2

⌉)
+ T

(⌊
n− 1

2

⌋)
+ c(n− 1)

= T (n− 1).

2.2 Slide 07

1. We do the proof for n a power of b; the result holds for n ∈ R≥0.

9

2. As on the following slides, T (1) = d (for some d > 0) should be part of
the definition here too.

3. We should add here that c > 0.
4. Checking that the Master Theorem implies that, for MergeSort T (n) ∈

Θ(n log n):
(a) Let

a = 2

b = 2

y = 1

x = logb a, so that

bx = a.

This gives us that
x = log2 2 = 1,

which, applying the Master Theorem, says that

T (n) ∈ Θ(n log n),

as desired.
5. The statement of the Theorem should be clarified, to say that, when

x = y, we get T (n) ∈ Θ(ny logb n) (i.e. state the base explicitly - it
depends on b - it is not always 2).

2.3 Slide 08

1. We should add here that y ∈ Z and j ≥ 0.
2. The final size number, namely n

bj
, equals 1, because n = bj.

3. Also the number of levels, namely logb n, equals j, because logb n =
logb(b

j) = j.

2.4 Slide 10

1. Suggested revisions for Armin: “is a geometric sequence” 7→ “involves
a geometric series”

10

2.5 Slide 11

Setup
1. x, y are integers.
2. a ≥ 1 and b ≥ 2 are integers, with a = bx, equivalently x = logb a.
3. The geometric series has first term a = 1 and common ratio r = a

by
=

bx

by
= bx−y.

4. n = bj, equivalently j = logb n.
5. aj = (bx)j = (bj)x = nx.
6. Simplify rj as much as possible:

rj =
(a

by

)j

=
aj

(bj)y
=

nx

ny
= nx−y.

Cases of the proof, explained more fully
1. r < 1 equivalently x < y:

(a) Per the CS 240 geometric series summary,
∑

i r
i ∈ Θ(1).

(b) This shows that T (n) ∈ Θ(ny) (since x < y, the second term
dominates the first).

2. r = 1 equivalently x = y:
(a) Per the CS 240 geometric series summary,

∑
i r

i ∈ Θ(j) =︸︷︷︸
j=logb n

Θ(logb n).

(b) This shows that T (n) ∈ Θ(ny logb n) (since x = y, the second term
dominates the first).

3. r > 1 equivalently x > y:
(a) Per the CS 240 geometric series summary,

∑
i r

i ∈ Θ(rj−1).
(b) By a Lemma from CS 240 recalled in the Background Information

document, this says that
∑

i r
i ∈ Θ(rj) =︸︷︷︸

above

Θ(nx−y).

(c) This shows that both terms lie in Θ(nx), so that by the sum rule,
we have T (n) ∈ Θ(nx).

2.6 Slide 12

1. Example: T (n) = 2T
(
n
2

)
+ n, T (1) = 0, n a power of 2.

11

(a) In the notation of the Master Theorem:

a = 2

b = 2

y = 1

x = logb a

= log2 2

= 1

x = y, equivalently

r = 1, so that

T (n) ∈ Θ(ny logb n)

= Θ(n log n).

2. CR to type up the notes on the guess-and-check approach to solving
this example.

2.7 Notes and Tasks from the Lecture

1. Notes
(a) Our course convention is (as it was in CS 240) that the base of

log is 2, unless otherwise specified.
2. Tasks

(a) Correct the suggested readings on the course website, in the second
half of the term.

3 Lecture 03 - Divide and conquer I

3.1 Slide 04

1. Examples: Amazon, YouTube, etc where you are a member of a group
who are all interested in some stuff.

2. We are not trying to solve the collaborative filtering problem. What
we are trying to solve is one of the many tools which might be useful
in collaborative filtering.

3. The Padlet question here is just to give them some time to think about
the problem and hopefully convinces them what we are doing has some
applications.

12

4. Answer to Exercise: Something like “compare the similarity of two
rankings” is a good answer.

5. Counting inversion is related to the answer. It is counting the places
in two rankings which are different.

3.2 Slide 06

1. Notation:
� cℓ: # of inversions in A

[
1, . . . , n

2

]
� cr: # of inversions in A

[
n
2
+ 1, . . . , n

]
� ct: # of transverse inversions i ≤ n

2
, j > n

2
.

2. Example: A = [1, 5, 2, 6, 3, 8, 7, 4], n = 8. Then

cℓ = 1− Swap : (2, 5)

cr = 3− Swap : (8, 7), (8, 4), (7, 4)

ct = 4− Swap : (6, 3), (6, 4), (5, 3), (5, 4)

Note, this accounts for all of the 8 inversions we listed earlier, on Slide
05.

3.3 Slide 08

1. Claim: T (n) = 2T
(
n
2

)
+ cn log n gives T (n) ∈ Θ(n log2 n).

Proof. Sketchy proof that T (n) ∈ O(n log2 n)

T (n) = 2T
(n
2

)
+ cn log n

= 2
[
2T

(n
4

)
+ c

(n
2

)
log

(n
2

)]
+ cn log n

= 4T
(n
4

)
+ cn log

(n
2

)
+ cn log n

· · ·

= cn

log 2 + log 4 + · · ·+ log n︸ ︷︷ ︸
logn terms

≤ cn

log n+ log n+ · · ·+ log n︸ ︷︷ ︸
logn terms

= cn log2 n.

13

Proof that T (n) ∈ Ω(n log2 n)
This proof follows the technique of substitution outlined in CLRS. Sup-
pose that there exists a constant d > 0 and an n0 such that, for all
n ≥ n0,

d
(n
2

)
log2

(n
2

)
≤ T

(n
2

)
.

Then

T (n) = 2T
(n
2

)
+ cn log n

≥ 2
[
d
(n
2

)
log2

(n
2

)]
+ cn log n

= dn (log n− log 2)2 + cn log n

= dn (log n− 1)2 + cn log n

= dn
(
log2 n− 2 log n+ 1

)
+ cn log n

= dn log2 n+ dn(1− 2 log n) + cn log n

≥ dn log2 n,

provided dn(1− 2 log n) + cn log n ≥ 0, which will hold provided

d ≤ c log n

2 log n− 1
.

No boundary conditions are given. We could work through the bound-
ary conditions as in CLRS, if needed.

3.4 Slide 09

1. Recall the notation: ct denotes the number of transverse inversions,
with i ≤ n

2
, j > n

2
.

3.5 Slide 10

1. The array A in this example is the same as in the previous example.
Hence the counts of inversions are also the same.

2. How to Compute ct:
(a) Keep a running total.
(b) Each time we insert S[i] into A, count how many new transverse

inversions have been carried out since the previous S[i]-insertion.

14

(c) line 5: j has gotten to big; all right-hand entries are already in-
serted. Hence the ith entry must be transversely inverted with all
of the right hand entries, n

2
of them. This gives c = c+ n

2
.

(d) line 6: j is still in bounds; the ith entry must be transversely in-
verted with the right hand entries inserted to date, j−

(
n
2
+ 1

)
of

them. This gives c = c+ j −
(
n
2
+ 1

)
.

3. We showed in Lecture 02 (Slide 07) that Mergesort has T (n) ∈ O(n log n).
The merge then contributed dn ∈ O(n) then; this part is the same here.

3.6 Slide 11

1. No divide and conquer yet. It’s coming on the next slide.
2. The first, brute force approach is in Θ(n2).

3.7 Slide 12

1. Assume that n is even.
2. F0 captures the low-order terms of F (and G0 does the same for G).
3. F1 captures the high-order terms of F (and G1 does the same for G).
4. Exercise: Want: F0G1+F1G0, using only one polynomial multiplication,

starting from F0, F1, G0, G1, F0G0, F1G1.

(F0 + F1)(G0 +G1)− F0G0 − F1G1

= F0G0 + F0G1 + F1G0 + F1G1 − F0G0 − F1G1

= F0G1 + F1G0,

3.8 Slide 13

1. Check the identity:

(F0 + F1x
n
2)(G0 +G1x

n
2)

= F0G0 + (F0G1 + F1G0)x
n
2 + F1G1x

n,

so that we will be done if we can confirm that the middle coefficient
equals (F0 + F1)(G0 + G1) − F0G0 − F1G1. But this is exactly the
exercise from the previous slide, no?

2. Analysis: 3 recursive calls, each in size n
2
:

(a) F0G0

15

(b) (F0 + F1)(G0 +G1)
(c) F1G1

3. T (n) = 3T
(
n
2

)
+ cn, analyzed using the Master Theorem:

a = 3

b = 2

y = 1

x = logb a

= log2 3

=
ln 3

ln 2
≈ 1.58

x > y, so that

r > 1, and therefore

T (n) ∈ Θ(nx)

= Θ(nlog2 3).

3.9 Slide 14

1. Gets close to exponent 1, as k → ∞. Check:

lim
k→∞

logk(2k − 1)

= lim
k→∞

ln(2k − 1)

ln k

=︸︷︷︸
L′Hopital

lim
k→∞

2
2k−1
1
k

= lim
k→∞

2k

2k − 1
= 1.✓

2. FFT stands for Fast Fourier Transforms.

16

3.10 Slide 16

1. T (n), analyzed using the Master Theorem:

a = 8

b = 2

y = 2

x = logb a

= log2 8

= 3

x > y, so that

r > 1, and therefore

T (n) ∈ Θ(nx)

= Θ(n3).

3.11 Slide 17

1. T (n), analyzed using the Master Theorem:

a = 7

b = 2

y = 2

x = logb a

= log2 7

=
ln 7

ln 2
≈ 2.807

x > y, so that

r > 1, and therefore

T (n) ∈ Θ(nx)

= Θ(nlog2 7).

3.12 Notes and Tasks from the Lecture

1. Notes

17

(a) Our course standard will be to number our arrays starting from
1, not from 0. We will explicitly state if any particular example
deviates from this standard.

(b) Slide 2: If possible, remove the extraneous page down at the end
of the page. Ask Armin.

(c) Slide 18: Do the results quoted here sit on top of the approach
taught in CS 370? Ask Armin/Mark.

(d) Slide 19: Should this blank page at the end be removed? Ask
Armin/Mark.

2. Tasks
(a) Update the website:

i. Post office hours, and start holding them this week.
(b) Slides 7-8: Make it clearer where we are talking about entries, not

indices. Where appropriate, change i into A[i]. Suggest to Armin
to revise the slides accordingly.

(c) Document, for Exams:
i. Reference Sheets
ii. Study Guide (what you will need to memorize, and what you

won’t)
iii. Practice Problems, about topics covered by the exam but not

yet by any assignment.

4 Lecture 04 - Divide and conquer II

4.1 Slide 03

1. Brute-force: Θ(n2).
2. Goal: Θ(n log n), using a Divide-and-Conquer approach.
3. See §33.4 in CLRS:

(a) Divide: Find a vertical line which bisects the point set into L and
R, of equal sizes (see the following pictures).

(b) Conquer: Make two recursive calls, one to handle each of the sub-
sets created above. This returns δL and δR, both of which are
needed as described below.

(c) Combine: Take the minimum over the three possibilities arising
from the setup:
i. min in L

18

ii. min in R
iii. min is transverse

4.2 Slide 05

1. dist(P,R) and dist(Q,L) are horizontal distances. In this example,
this is where the white band comes from. δ = 4, so the white band
covers all points at dist ≤ 4 from the other side.

2. I suggest the more clear notation yP ≤ yQ < yP + δ, instead of yP ≤
y < yP + δ. We have already restricted to the one point of interest
on the left, labelled P at the previous step: it is the only point in the
white band created in the previous step.

3. One small confusing point: we were looking for transverse pairs just a
moment ago, but the constructed rectangle contains points on the left.

4.3 Slide 07

1. A square on the left contains at most one point from L. Reason: If
some square contained two points, then the distance separating them
would be ≤ δ

2
< δ, contradicting the definition of δ.

2. The same argument shows that the square on the right contains at most
one point from R.

4.4 Slide 08

1. The reason for O(n log n) runtime for initialization: sort the points
twice, with respect to x and y (c.f. kd-trees, in Module 8 of CS 240).

2. Explanation about splitting the sorted lists for the recursive calls: A par-
ticular invocation is given a subset P and the array Y , sorted by y-
co-ordinate. Having partitioned P into PL, PR, we must form arrays
YL, YR, sorted by y-co-ordinate (in linear time). Think of this as the
opposite of MERGE: split a sorted array into two sorted arrays. Exam-
ine the points in Y in order. If a point Y [i] is in PL, then append it to
YL; otherwise append it to YR. A similar approach works for forming
the arrays XL, XR.

3. Finding the x-median is easy, because we have already sorted the points
by x-co-ordinate, when we initialized.

19

4. Run time: Recursive calls: all to justify the Θ(n) term in the recursive
formula.

4.5 Slide 09

1. We should standardize our notation here. In Lecture 03, our arrays
were indexed 1 . . . n. Here our arrays are indexed 0 . . . n− 1.

2. I also suggest that we create a new line for the heading “Known Re-
sults”. Talk to Armin.

3. Reason why a randomized algorithm has expected run time in Θ(n):
Refer to CS 240, Module 03, Section on Randomized Algorithms.

4. Assumption: All the A[i]s are distinct.

4.6 Slide 12

1. Explanation for 3n
10
:

(a) 1
2
of the mis are > p.

(b) There are n
5
mis.

(c) So the number of mis that are > p is
(
1
2

) (
n
5

)
= n

10
.

(d) Each mi is the median of a set of size 5; hence there are 3 entries
in that set of size 5 which are ≥ mi.

(e) Each of these 3 entries is ≥ mi > p, by transitivity.
(f) Hence the total number of entries which are > p is 3

(
n
10

)
= 3n

10
.

2. Why “same thing for n− i− 1” is correct: swap less / greater through-
out: the analysis still works the same way.

3. If time permits, you can (make sure you tell the students this is op-
tional, since it’s not part of the W25 slide deck) Slide 13 from Éric’s
slide deck.

4. This (almost) completes our section on divide-and-conquer.
5. We will actually finish it at the end of Lecture 05, using the remaining

time for additional examples and techniques.

4.7 Notes and Tasks from the Lecture

1. Notes
(a) Slide 04

i. Explain that the point on the vertical boundary is another
choice for P , to be handled at a different time.

20

(b) Slide 05
i. Label the RH point as Q? Ask Armin.
ii. Why is it enough to

A. draw the rectangle with P at its bottom, i.e.
B. only consider points with yP ≤ y ≤ yP + δ?
Read CLRS and better explain why the pre-sorting that we
do at the time of initialization (by x-co-ordinates and by y-
co-ordinates) makes this work.

(c) Slide 07
i. Explain why the maximum distance between two points in

one of the small squares is < δ: The diagonal distance for a

square with side length δ
2
equals

(√
2
2

)
δ < δ.

(d) Slide 08
i. Explain where the recursion stops: for any set containing ≤ 2

points, no recursive calls are needed - just handle transverse
pairs.

(e) Slide 11
i. Why 5? So far, it appears arbitrary. The analysis happens to

work out.
(f) Slide 12

i. Note: In this example, we do not actually divide: We
just create one smaller instance to process at each level of
recursion!

2. Tasks
(a) Run a poll (on Piazza?) to discover whether there is any appetite

for virtual office hours.

5 Lecture 05 - Divide and conquer III

5.1 Rough Plan, To Be Fleshed Out

1. Method of Substitution, from CLRS.
(a) Rigourous proof that T (n) = 2T

(
n
2

)
+ cn log n gives T (n) ∈

Θ(n log2 n).
2. Method of Change of Variables, from CLRS.
3. Correctness Proof(s), skipped earlier, from CLRS.

21

6 Lecture 06 - Graphs algorithms I - breadth

first search

6.1 Lecture Content

1. Get caught up, ASAP!
2. To start, no edge can connect to itself, so every edge is defined by a

pair of distinct nodes.
3. Convince yourself that, given a graph, the m mentioned in the defini-

tions is constant.
4. Good Student Question: Given a tree, does it matter which node

we choose to be the root?
A: No! Parent-child relationships will change, but no properties that
we will need will change, if we make a different choice of root!

5. Convince yourself that Eric’s statement that induction and contradic-
tion are really the same thing (to prove POMI is correct, we argue by
contradiction), is actually correct!

6. Correctness 1 needs strong induction; Correctness 2 needs only simple
induction.

7. To test whether there is a walk from v to w, run BFS from v, then test
whether visited(w) = true.

8. To test whether a graph is connected, run BFS from anywhere, then
test that m = n− 1??? Check this one!

9. A given vertex comes out of the queue at most once (it can only go
into the queue once; it might never come out).

10. dv denotes the degree of vertex v (i.e. the number of edges emanating
from it).

11. Look up the handshake lemma!
12. ASAP, remind yourself about the basic properties of O, Ω, Θ, etc.
13. Keeping track of parents and levels: Now, to test whether a node

was visited, we check whether its parent is not NIL. Check you under-
stand why the algorithm gives us this!

14. Graph Convention: The distance between two nodes which are not
connected, is infinite.

15. Shortest paths from the BFS tree:
(a) Let v0 → v1 → · · · → vi−1 → vi → · · · → v → vk be a shortest

path s → v.

22

(b) level(v) ≤ dist(s, v) = k.
(c) For all i, level(i) ≤ i.
(d) The level of the parent of vi is either vi−1 or a node that came

before vi−1.
(e) level(parent(vi)) ≤ level(vi−1)
(f) Fill in the rest from the slide!
(g) Make certain you understand it!

7 Lecture 07 - Graph algorithms II - depth-

first search

7.1 Lecture Content

1. Connected components are the equivalence classes under the equiva-
lence relation: a ∼ b if and only if there exists a path from a to b.
Duh!

2. DFS is BFS, with the queue replaced by a stack.
3. DFS is much more natural to define, using recursion.
4. CRLS colour scheme:

(a) white - not started visiting yet
(b) grey - visiting in process (on the stack)
(c) black - visiting is completed

5. DFS Basic Properties: Are these proofs meant to be left as exercises?
6. We will see why back edges are so named, soon.

7.2 Tasks

1. Start a binder for CS 341, now!
2. Confirm that the white-path lemma referenced here is from MATH

239?
3. Look up the odd-cycle lemma (I think), from MATH 239?

23

8 Lecture 08 - Graph algorithms III - Di-

rected graphs

8.1 Lecture Content

1. Catch up, ASAP!

9 Lecture 09 - Graph algorithms IV - Dijk-

stra’s algorithm

9.1 Lecture Content

1. Catch up, ASAP!

10 Lecture 10 - Graph algorithms V - Mini-

mum spanning trees

10.1 Bellman-Ford Algorithm

1. Slide 7: The induction here is on i.
2. Slide 8: I think he said that, in the MIT notes, the corresponding result

is named “Safety Lemma”, for some reason.
(a) δ(s, v) ≤ δ(s, u) + w(u, v) for any edge (u, v) ∈ E.
(b) If δ(s, v) ≤ · · · too slow!

3. Slide 10: Summary.
(a) If no negative cycle is reachable from s, for all u, v · · · too slow!
(b) How to derive the contradiction (assuming triangle inequality holds

everywhere, I think):
Sum inequalities of the form d(v) ≤ d(vi) + w(vi, u).
If there is a negative weight somewhere, then you will get some-
thing like 0 ≤ −5 (as in the example), contradiction.
Work out an example for yourself, ASAP!

10.2 Floyd-Warshall Algorithm

1. Slide 13: SCC means strongly connected component.

24

2. Slide 16:
(a) Exercise 1, not proved. He says it is annoying. Check carefully

that you are summing the same thing.
(b) Exercise 2: Supposing we know the P array; then we can easily

construct the desired shorted path. He says this one is not difficult,
but should be checked.

10.3 Slide 17

1. Exercise: recover the optimum subset.
(a) Add another two-dimensional indicator array I[0 . . .W, 0 . . . n] to

the setup.
(b) As the value is being updated in the O array, Update the cor-

responding cell of the I array to capture whether that item is
included or not.

(c) Examine the row I[W, 1 . . . n] of the constructed matrix.
(d) Also check this with Mark.

2. NP-completeness will be the last topic in our course.
3. Task: Check CLRS for any further explanation about pseudo-polynomial

algorithms!

10.4 Slide 18

1. Option 2 is not quite correct yet: it will yield a choice satisfying ≤, not
necessarily =.

2. We would, at a minimum, need to add a step at the end, to check that
the maximal choice returned does actually satisfy equality.

1. Stuff.

11 Lecture 11 - Greedy algorithms I

Stuff.

12 Lecture 12 - Greedy algorithms II

Stuff.

25

13 Lecture 13 - Greedy algorithms III

Stuff.

14 Lecture 14 - Dynamic Programming I

14.1 Slide 02

1. “Dynamic” because we will program something on the fly, I really hope!

14.2 Slide 04

1. Explanation for T (n) = F (n+ 1)− 1:
(a) Proof by (strong) induction on n ≥ 0.
(b) Base (n = 0):

i. T (0) = 0.
ii. F (0 + 1)− 1 = F (1)− 1 = 1− 1 = 0✓

(c) Base (n = 1):
i. T (1) = 0.
ii. F (1 + 1)− 1 = F (2)− 1 = 1− 1 = 0✓

(d) Induction (n > 1):
i. I.H. T (n− 1) = F (n)− 1 and T (n− 2) = F (n− 2)− 1.
ii.

T (n) = T (n− 1) + T (n− 2) + 1

=︸︷︷︸
I.H.

[F (n)− 1] + [F (n− 1)− 1] + 1

= F (n) + F (n− 1)− 1

=︸︷︷︸
Fibonacci definition

F (n+ 1)− 1.

2. Explanation for T (n) ∈ Θ(φn), where φ = 1+
√
5

2
, the Golden Ratio:

(a) The nth Fibonacci number can (up to 71) be computed by the
(modified Binet) formula

Fn = round

(
φn

√
5

)
.

26

14.3 Slide 10

1. all indices < n 7→ all indices t < n.

14.4 Slide 11

1. increasing end time 7→ non-decreasing end time.

14.5 Slide 12

1. Definition of M [j]: from the two cases mentioned earlier:
(a) where we exclude interval j, and
(b) where we include interval j: wj is from including interval j, and

M [pj] is from all intervals that don’t overlap with interval j.
2. Exercise: recover the optimum set, not only M [n], for extra Θ(n).

(a) I think we just need to add an indicator array of size n, and
indicate in that array for each interval j, whether we have included
interval j or not, as we go through the main procedure.

(b) Then at the end, make one pass through the array to list off which
intervals we included.

(c) Check all of this with Mark, when time permits.

14.6 Slide 14

1.
S ⊂ {1, . . . , n} 7→ S ⊆ {1, . . . , n}.

2. While the above is mathematically more correct, the problem will be
trivial if we can include everything!

14.7 Slide 15

1. we choose item n or not 7→ we include item n, or we don’t
2. “choose” 7→ “include” through the rest of the bullets also.
3. Indent the list of two items, of which we take the max.

14.8 Slide 16

1. The array O is two-dimensional!

27

2. Explanation for why the run time is in Θ(nW):
(a) The outer loop runs n times.
(b) The inner loop runs W times.
(c) The work inside the inner loop is all in Θ(1).

15 Lecture 15 - Dynamic programming II

Stuff.

16 Lecture 16 - Dynamic programming III

Stuff.

17 Lecture 17 - Dynamic programming IV

Stuff.

18 Lecture 18 - Reductions

1. Stuff.

19 Lecture 19 - Reductions, P, NP, co-NP

Still from Lecture 19, I think
1. The definition of a clique in a graph does not make sense to me yet.

Thnink about it some more.
2. All reductions below are polynomial time.
3. IS leq Clique ≤ IS Too slow! Second reduction is same as first, I think.
4. IS leq VC ≤ IS first reduction: Q 7→ G; K 7→ n \K.

Now from Lecture 20, I think
1. Slide 4 Correct “conjonctive” to “conjunctive”!

28

20 Lecture 20 - NP-completeness

Still from Lecture 20, I think
1. Global: To verify a decision problem lies in NP: it must have a poly-

nomial size certificate and a polynomial time verification algorithm.
2. Slide 16: Stuff.

Now from Lecture 21, I think
1. Slide 9:

(a) certification: are at least 2 yis 1?
(b) Darn! Too slow!
(c) Hey, he mentioned that students see Turing machines in CS 245!

2. Given an instance x ∈ PROB ∈ NP , build circuit from B(x, ·). Input
to the circuit = certificate, y.

3. He waved his hands over constructing the circuit. Still, polynomial
size.

4. Slide 12:
(a) To prove 3SAT ≤ Indepenent− Set.
(b) We know I.S. ≤ Clique, I.S. ≤ V ertex−Cover, so I.S., Clique, V ertex−

Cover are all NP-complete.
(c) Exercise: explain (English, pseudo-code not required) why the

provided construction is polynomial time.

21 Lecture 21 - NP-completeness

Still from Lecture 21.
1. Slide 18:

(a) input size = ℓ︸︷︷︸
of clauses

· log n︸︷︷︸
of bits needed to write indices in{1,...n}

(b) x1000 ∨ x1001 ∨ x1000

(c) (becomes)
x1 ∨ x2 ∨ x1

Now from Lecture 22
1. Slide 4:

(a) We all agree to quietly forget the Euclidean Travelling Salesman
Problem.

2. Slide 6:
(a) k = 0: if and only if there exist no vertices. Silly, but correct.

29

22 Lecture 22 - NP-Completeness

Stuff.

23 Lecture 23 - NP-Completeness

Still from Lecture 22.
1. Slide 17:

(a) Per variable, 2s tips → 2ns total.
(b) ns covered in pink
(c) s covered (at least) by clauses
(d) So we get ns− s tips (= 4) uncovered ???

Now from Lecture 23
1. Slide 4:

(a) Stuff.
2. Slide 6:

(a) Stuff.

24 Lecture 24 - Misc

Still from Lecture 23.
1. Slide 4:

(a) log t, because we express the bound on the run-time, in binary
form.

2. Slide 7:
(a) The Halting Problem is NP-hard, but not in NP.

25 Lecture 25 - Max flow

25.1 Max Flow

1. Slide 5:
(a) The edge in the first sum is named e.

2. Slide 6:
(a) Not clearly a flow problem yet, but it is “close enough”.

30

(b) See the graph at the bottom of the slide, where the labels indicate
capacities.

3. Slide 7:
(a) The algorithm might not be polynomial. It might only be pseudo-

polynomial.
4. Slide 8:

(a) Modify the provided flow, to increase its value from 3 to 4.
5. Slide 10:

(a) Explanation for why we want a minimal value of all capacities
on γ in Gf :
i. It is the most conservative choice, hence the least likely to

violate any flow constraints after we have modified the graph
as in the algorithm.

(b) Why the new flow is improved: As on the slide itself!
6. Slide 11: Why we still have a flow afterwards: Let f be the new flow.

(a) For all integers 0 ≤ f ′(e) ≤ c(e)
(b) Suppose e is blue: f ′(e) = f(e) + x.
(c) Hence f ′(e) ≥ 0 because x ≥ 0.
(d) Also, x︸︷︷︸

min capacity

≤ c(e)− f(e)︸ ︷︷ ︸
capacity of e in Gf

so f(e) + x︸ ︷︷ ︸
f ′(e)

≤ c(e).

(e) Now, 1 of 4 possible cases: blue-in, red-out, I think
red edge got decreased by x.
blue edge got increased by x.
Things work out in this case.

(f) The other 3 cases are similar
(g) Now suppose e is red? Maybe I missed this case.
(h) Check these details, ASAP!

7. Slide 13
(a) After 200000 steps, we will terminate and return the max flow.
(b) I think that he said this is true polynomial time.
(c) We can do better at choosing our augmented graph; he did not

explain how.
8. Slide 14

(a) Check that r2 = 1− r.
(b) This implies (multiplying through by ri) ri+2 = ri − ri+1.

9. Slide 18
(a) No need to know how the example was created.

31

(b) Moral: If we stick to integers, the algorithm will terminate, find-
ing the maximum flow.

(c) Next Lecture: proof of correctness.

26 Lecture 26 - Max flow = Min cut

Stuff.

27 Lecture 27 - Applications of Flows and

Cuts

1. General I think that he said he proved in Lecture 17 that max-flow
equals min-cut. Check it!

2. Slide 4
(a) I think we need a bit more care in the “loop” case: What if we

loop back to the source???
(b) I think the induction step is is (quietly) a proof by contradiction.

Check it!
(c) Recall that the value of a flow is the total amount leaving the

source node.
(d) Check all of this, and generate questions for Éric, ASAP.
(e) Stuff.

3. Slide 11
(a) Stuff.

32

	Lecture 01 - Introduction, review of asymptotics
	Course Intro
	Slide 09
	Slide 10
	Slide 13 Exercise
	Slide 14 Exercise
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 21
	Slide 22
	Slide 24
	Notes and Tasks from the Lecture

	Lecture 02 - Solving recurrences
	Slide 03
	Slide 07
	Slide 08
	Slide 10
	Slide 11
	Slide 12
	Notes and Tasks from the Lecture

	Lecture 03 - Divide and conquer I
	Slide 04
	Slide 06
	Slide 08
	Slide 09
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 16
	Slide 17
	Notes and Tasks from the Lecture

	Lecture 04 - Divide and conquer II
	Slide 03
	Slide 05
	Slide 07
	Slide 08
	Slide 09
	Slide 12
	Notes and Tasks from the Lecture

	Lecture 05 - Divide and conquer III
	Rough Plan, To Be Fleshed Out

	Lecture 06 - Graphs algorithms I - breadth first search
	Lecture Content

	Lecture 07 - Graph algorithms II - depth-first search
	Lecture Content
	Tasks

	Lecture 08 - Graph algorithms III - Directed graphs
	Lecture Content

	Lecture 09 - Graph algorithms IV - Dijkstra's algorithm
	Lecture Content

	Lecture 10 - Graph algorithms V - Minimum spanning trees
	Bellman-Ford Algorithm
	Floyd-Warshall Algorithm
	Slide 17
	Slide 18

	Lecture 11 - Greedy algorithms I
	Lecture 12 - Greedy algorithms II
	Lecture 13 - Greedy algorithms III
	Lecture 14 - Dynamic Programming I
	Slide 02
	Slide 04
	Slide 10
	Slide 11
	Slide 12
	Slide 14
	Slide 15
	Slide 16

	Lecture 15 - Dynamic programming II
	Lecture 16 - Dynamic programming III
	Lecture 17 - Dynamic programming IV
	Lecture 18 - Reductions
	Lecture 19 - Reductions, P, NP, co-NP
	Lecture 20 - NP-completeness
	Lecture 21 - NP-completeness
	Lecture 22 - NP-Completeness
	Lecture 23 - NP-Completeness
	Lecture 24 - Misc
	Lecture 25 - Max flow
	Max Flow

	Lecture 26 - Max flow = Min cut
	Lecture 27 - Applications of Flows and Cuts

