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Divide-and-Conquer

A general algorithmic paradigm (strategy):

Divide: Split a problem into several subproblems.

Conquer: Solve the subproblems (recursively) applying the
same algorithm.

Combine: Use subproblem results to derive a final result
for the original problem.
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When can we use Divide and Conquer?

Original problem is easily decomposable into subproblems
(we do not want to see “overlap” in the subproblems).

Combining solutions is not too costly.

Subproblems are not overly unbalanced.

A. Jamshidpey, C. Roberts (UW) Lec 03: Divide and Conquer Winter 2025 3 / 19



When can we use Divide and Conquer?

Original problem is easily decomposable into subproblems
(we do not want to see “overlap” in the subproblems).

Combining solutions is not too costly.

Subproblems are not overly unbalanced.

A. Jamshidpey, C. Roberts (UW) Lec 03: Divide and Conquer Winter 2025 3 / 19



When can we use Divide and Conquer?

Original problem is easily decomposable into subproblems
(we do not want to see “overlap” in the subproblems).

Combining solutions is not too costly.

Subproblems are not overly unbalanced.

A. Jamshidpey, C. Roberts (UW) Lec 03: Divide and Conquer Winter 2025 3 / 19



Counting inversions

Collaborative filtering:

matches users preference (movies, music, ...)

determine users with similar tastes

recommends new things to users based on preferences of
similar users

Padlet

The basis of collaborative filtering is ...
https://padlet.com/arminjamshidpey/CS341
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Counting inversions

Goal: given an unsorted array A[1..n], find the number of
inversions in it.

Def: (i, j) is an inversion if i < j and A[i] > A[j]

Example: with A = [1, 5, 2, 6, 3, 8, 7, 4], we get

(2, 3), (2, 5), (2, 8), (4, 5), (4, 8), (6, 7), (6, 8), (7, 8)

Remark: we show the indices where inversions occur

Remark: easy algorithm (two nested loops) in Θ(n2)
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Toward a divide-and-conquer algorithm

Idea (for n a power of two)

cℓ = number of inversions in A[1..n/2]

cr = number of inversions in A[n/2 + 1..n]

ct = number of transverse inversions with i ≤ n/2 and
j > n/2

return cℓ + cr + ct

Example: with A = [1, 5, 2, 6, 3, 8, 7, 4]

cℓ = 1 (2, 3)

cr = 3 (6, 7), (6, 8), (7, 8)

ct = 4 (2, 5), (2, 8), (4, 5), (4, 8)

cℓ and cr done recursively. What about ct?
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Transverse inversions

Goal: how many pairs (i, j) with i ≤ n/2, j > n/2, A[i] > A[j]?

Remark: this number does not change if both sides are sorted

So assume that we sort left and right after the recursive calls.

Example: starting from [1, 5, 2, 6, 3, 8, 7, 4], we get

[1, 2, 5, 6, 3, 4, 7, 8]

ct = #i’s greater than 3 + #i’s greater than 4 +
#i’s greater than 7 + #i’s greater than 8
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Option 1

Algorithm: take each i ≤ n/2 and binary-search its position in
the right-hand side.

this is O(log(n)) per i, so total O(n log(n))

plus another O(n log(n)) for sorting left and right

recurrence: T (n) ≤ 2T (n/2) +O(n log(n))

gives T (n) = O(n log2(n))

Sketchy proof:

T (n) ≤ 2T (n/2) + n log(n)

≤ 4T (n/4) + n log(n/2) + n log(n)

≤ 8T (n/8) + n log(n/4) + n log(n/2) + n log(n)

≤ · · · ≤ n(log(n) + log(n/2) + · · ·+ log(2))

≤ n log2(n)
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Option 2: enhance mergesort

Idea: find ct during merge.

Merge(A[1..n]) (both halves of A assumed sorted)
1. copy A into a new array S
2. i = 1; j = n/2 + 1;
3. for (k ← 1; k ≤ n; k++) do
4. if (i > n/2) A[k]← S[j++]
5. else if (j > n) A[k]← S[i++]
6. else if (S[i] < S[j]) A[k]← S[i++]
7. else A[k]← S[j++]
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Merge(A[1..n]) (both halves of A assumed sorted)
1. copy A into a new array S; c = 0
2. i = 1; j = n/2 + 1;
3. for (k ← 1; k ≤ n; k++) do
4. if (i > n/2) A[k]← S[j++]
5. else if (j > n) A[k]← S[i++]; c = c+ n/2
6. else if (S[i] < S[j]) A[k]← S[i++]; c = c+ j − (n/2 + 1)
7. else A[k]← S[j++]

Example: with [1, 2, 5, 6, 3, 4, 7, 8]

when we insert 1 back into A, j = 5 so c = c+ 0

when we insert 2 back into A, j = 5 so c = c+ 0

when we insert 5 back into A, j = 7 so c = c+ 2

when we insert 6 back into A, j = 7 so c = c+ 2

Enhanced merge is still Θ(n) so total remains Θ(n log(n)).
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Multiplying polynomials

Goal: given F = f0 + · · · + fn−1x
n−1 and

G = g0 + · · · + gn−1x
n−1, compute

H = FG = f0g0 + (f0g1 + f1g0)x+ · · ·+ fn−1gn−1x
2n−2

1. for i = 0, . . . , n− 1 do
2. for j = 0, . . . , n− 1 do
3. hi+j = hi+j + figj
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Divide-and-conquer
Idea: write F = F0 + F1x

n/2,G = G0 + G1x
n/2. Then

H = F0G0 + (F0G1 + F1G0)x
n/2 + F1G1x

n

Analysis:

4 recursive calls in size n/2

Θ(n): additions to compute F0G1+F1G0 and etc.

Recurrence: T (n) = 4T (n/2) + Θ(n)

a = 4, b = 2, y = 1 so T (n) = Θ(n2)

Not better than the naive algorithm. We do the same
operations.

Padlet

Use only one multiplication to write F0G1 + F1G0 in terms of
F0, F1, G0, G1, F0G0, F1G1(assume F0G0, F1G1 are given).
https://padlet.com/arminjamshidpey/CS341
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Karatsuba’s algorithm
Idea: use the identity

(F0 + F1x
n/2)(G0 +G1x

n/2) =

F0G0 + ((F0 + F1)(G0 + G1)− F0G0 − F1G1)x
n/2 + F1G1x

n

Analysis:

3 recursive calls in size n/2

Θ(n) additions to compute F0 + F1 and G0 +G1

multiplications by xn/2 and xn are free

Θ(n) additions and subtractions to combine the results

Recurrence: T (n) = 3T (n/2) + Θ(n)

a = 3, b = 2, c = 1 so T (n) = Θ(nlog2(3))
log2(3) = 1.58 . . .

Remark: key idea = a formula for degree-1 polymomials that
does 3 multiplications
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Toom-Cook and FFT

Toom-Cook:

a family of algorithms based on similar expressions as
Karatsuba

for k ≥ 2, 2k − 1 recursive calls in size n/k

so T (n) = Θ(nlogk(2k−1))

gets as close to exponent 1 as we want (but very slowly)

FFT:

if we use complex coefficients, FFT can be used to multiply
polynomials

FFT follows the same recurrence as merge sort,
T (n) = 2T (n/2) + Θ(n)

so we can multiply polynomials in Θ(n log(n)) ops over C
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Multiplying matrices

Goal: given A = [ai,j]1≤i,j≤n and B = [bj,k]1≤j,k≤n compute
C = AB

Remark: input and output size Θ(n2), easy algorithm in Θ(n3)

1. for i = 1, . . . , n do
2. for j = 1, . . . , n do
3. for k = 1, . . . , n do
4. ci,k = ci,k + ai,jbj,k
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Divide-and-conquer

Setup: write

A =

(
A1,1 A1,2

A2,1 A2,2

)
B =

(
B1,1 B1,2

B2,1 B2,2

)
with all Ai,k, Bi,j of size n/2× n/2. Then

C =

(
A1,1B1,1 +A1,2B2,1 A1,1B1,2 +A1,2B2,2

A2,1B1,1 +A2,2B2,1 A2,1B1,2 +A2,2B2,2

)
Naively: 8 recursive calls in size n/2 + Θ(n2) additions =⇒
T (n) = Θ(n3)

Padlet

Can we do better than 8 recursive calls?
https://padlet.com/arminjamshidpey/CS341
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Strassen’s algorithm

Compute∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Q1 = (A1,1 −A1,2)B2,2

Q2 = (A2,1 −A2,2)B1,1

Q3 = A2,2(B1,1 +B2,1)
Q4 = A1,1(B1,2 +B2,2)
Q5 = (A1,1 +A2,2)(B2,2 −B1,1)
Q6 = (A1,1 +A2,1)(B1,1 +B1,2)
Q7 = (A1,2 +A2,2)(B2,1 +B2,2)

and

∣∣∣∣∣∣∣∣
C1,1 = Q1 −Q3 −Q5 +Q7

C1,2 = Q4 −Q1

C2,1 = Q2 +Q3

C2,2 = −Q2 −Q4 +Q5 +Q6

Analysis: 7 recursive calls in size n/2 + Θ(n2) additions =⇒
T (n) = Θ(nlog2(7))

log2(7) = 2.80 . . .

Padlet

Can we multiply two 2× 2 matrices with less than 7
multiplications?
https://padlet.com/arminjamshidpey/CS341
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What this means

Direct generalization

an algorithm that does k multiplications for matrices of
size ℓ gives T (n) ∈ Θ(nlogℓ(k))

Going beyond

an algorithm that does k multiplications for matrices of
size ℓ,m by m, p gives T (n) ∈ Θ(n3 logℓmp(k))

Best exponent to date (using more than just
divide-and-conquer)

O(n2.37188), improves from previous record O(n2.37286)

galactic algorithms
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