CS 341: Algorithms Lec 11: Dynamic Programming

Armin Jamshidpey Collin Roberts

Based on lecture notes by Éric Schost

David R. Cheriton School of Computer Science, University of Waterloo

Winter 2025

Goals

This module: the dynamic programming paradigm through examples

• interval scheduling, longest increasing subsequence, longest common subsequence, etc

Computational model:

- word RAM
- assume all weights, values, capacities, deadlines, etc, fit in a word

What about the name?

- $\bullet\ \mbox{programming}\ as\ in\ \mbox{decision}\ \mbox{making}\ \label{eq:programming}$
- dynamic because it sounds cool.

A slow recursive algorithm

Def: Fibonacci numbers

•
$$F_0 = 0, F_1 = 1$$

•
$$F_n = F_{n-1} + F_{n-2}$$
 for $n \ge 2$

Fib(n)

 1.
 if
$$n = 0$$
 return 0

 2.
 if $n = 1$ **return** 1

 3.
 return Fib $(n - 1) + Fib(n - 2)$

Assuming we count additions at unit cost, runtime is

$$T(0) = T(1) = 0, \quad T(n) = T(n-1) + T(n-2) + 1$$

This gives
$$T(n) = F(n+1) - 1$$
, so $T(n) \in \Theta(\varphi^n)$,
 $\varphi = (1 + \sqrt{5})/2$.

A better algorithm

Observations

- to compute F_n , we only need the values of F_0, \ldots, F_{n-1}
- the algorithm recomputes them many, many times

Improved recursive algorithm

let
$$T = [0, 1, \bullet, \bullet, ...]$$
 be a global array
Fib (n)
1. **if** $T[n] = \bullet$
2. $T[n] = \text{Fib}(n-1) + \text{Fib}(n-2)$
3. **return** $T[n]$

A better algorithm

Iterative version

Fib(n)
1. let
$$T = [0, 1, \bullet, \bullet, ...]$$

2. for $i = 2, ..., n$
3. $T[i] = T[i-1] + T[i-2]$
4. return $T[n]$

A better algorithm

Iterative version (enhanced, not always feasible)

 Fib(n)

 1. $(u, v) \leftarrow (0, 1)$

 2. for i = 2, ..., n

 3. $(u, v) \leftarrow (v, u + v)$

 4. return v

All these improved versions use O(n) additions

Main feature: solve "subproblems" bottom up, and store solutions if needed.

A Recipe for Designing a D. P. Algorithm

Identify the subproblem

Typically the computation of solutions of the subproblems will make it natural to retain the solutions in an array.

- Need to know dimensions of the array
- specify the precise meaning of the value in any cell of the array
- ▶ specify where the answer will be found in the array

2 Establish DP-recurrence

Specify how a subproblem contributes to the solution of a larger subproblem. How does the value in a cell of the array depend on the values of other cells in the array?

Set values for the base cases

Specify the order of computation

The algorithm must clearly state the order of computation for the cells.

Secovery of the solution (if needed)

Keep track of the subproblems that provided the best solutions. Use a traceback strategy to determine the full solution.

Dynamic programming

Key features

- solve problems through recursion
- use a small (polynomial) number of **nested subproblems**
- may have to store results for all subproblems
- can often be turned into one (or more) loops

Dynamic programming vs divide-and-conquer

- \bullet dynamic programming usually deals with all input sizes $1,\ldots,n$
- DAC may not solve "subproblems"
- DAC algorithms not easy to rewrite iteratively

The Interval scheduling Problem

Input:

- *n* intervals $I_1 = [s_1, f_1], \dots, I_n = [s_n, f_n]$ start time, finish time
- each interval has a weight w_i

Output:

- \bullet a choice T of intervals that do not overlap and maximizes $\sum_{i\in T} w_i$
- greedy algorithm in the case $w_i = 1$

Example: A car rental company has the following requests for a given day:

with weight Out (In-Ja) An optimal solution : Os (I1,..., In) $O_{w}(I_{1},...,I_{n}) = \begin{cases} \omega_{n} + O_{\omega}(I_{n},...,I_{n}) & \text{if we take In} \\ O_{\omega}(I_{1},...,I_{n}) = O_{\omega}(I_{1},...,I_{n}) & \text{if we don't take In} \\ I_{n} & \text{if we don't take In} \end{cases}$ Sort I's by increasing order of finish time: I, ..., In f, SF2 S... Sfn Define P; for interval I; to be the largest index less than j such that the interval Ip; and I; are disjoint.

Sketch of the algorithm

Basic idea: either we choose I_n or not.

- then the optimum $O(I_1, \ldots, I_n)$ is the max of two values:
- $w_n + O(I_{m_1}, \ldots, I_{m_s})$, if we choose I_n , where I_{m_1}, \ldots, I_{m_s} are the intervals that do not overlap with I_n
- $O(I_1, \ldots, I_{n-1})$, if we don't choose I_n

In general, we don't know what I_{m_1}, \ldots, I_{m_s} look like. Goal:

- find a way to ensure that I_{m_1}, \ldots, I_{m_s} are of the form I_1, \ldots, I_s , for some s < n (and so on for all indices < n)
- then it suffices to optimize over all $I_1, \ldots, I_j, j = 1, \ldots, n$

The indices p_j

Assume I_1, \ldots, I_n sorted by increasing end time: $f_i \leq f_{i+1}$

Claim: for all j, the set of intervals $I_k \leq I_j$ that do not overlap I_j is of the form I_1, \ldots, I_{p_j} for some $0 \le p_j < j$ $(p_j = 0$ if no such interval) finish time The algorithm will need the p_i 's. • if $-\infty < s_i < f_1$, $p_i = 0$ f_1 = earliest finish time • if $f_1 < s_i < f_2$, $p_i = 1$ • . . . (we will write $f_0 = -\infty$) $f_1 \leq f_2 \leq \cdots \leq f_n$

Computing the p_j 's

let A be a permutation of $[1, \ldots, n]$ such that

$$s_{A[1]} \le s_{A[2]} \le \dots \le s_{A[n]}$$

Exercise: make sure you know how to find such an A

FindPj $(A, s_1, \ldots, s_n, f_1, \ldots, f_n)$ 1. $f_0 \leftarrow -\infty$ 2. $i \leftarrow 1$ 3. for $k = 0, \ldots, n$ 4. while $i \le n$ and $f_k \le s_{A[i]} < f_{k+1}$ 5. $f_{A(i)}$ $p_i \leftarrow k$ 6. i + +

Runtime: $O(n \log(n))$ (sorting) and O(n) (loops)

while \ldots $f_{s} \leq s_{A[i]} < f_{i} = 2$ Find Pis i=1 , k=0 Pzo i = 2P. = 0 i=31=3, k=1 While ... 2= f, & SARI < f2=4 P4 = 1 i = 4 $P_{7} = 1$

i=5

Main procedure

Definition: M[i] is the maximal weight we can get with intervals I_1, \ldots, I_i

Recurrence:
$$M[0] = 0$$
 and for $i \ge 1$
 $M[i] = \max(M[i-1], M[p_i] + w_i)$

Runtime: $O(n \log(n))$ (sorting twice) and O(n) (finding the M[i]'s)

Exercise: recover the optimum set for an extra O(n)

The 0/1 Knapsack Problem

Input:

- items $1, \ldots, n$ with weights w_1, \ldots, w_n and values v_1, \ldots, v_n
- $\bullet \ {\rm a}$ capacity W

Output:

- a choice of items $S \subset \{1, \ldots, n\}$
- that satisfies the constraint $\sum_{i \in S} w_i \leq W$
- and maximizes the value $\sum_{i \in S} v_i$

Example:

•
$$w_1 = 3, w_2 = 4, w_3 = 6, w_4 = 5$$

•
$$v_1 = 2, v_2 = 3, v_3 = 1, v_4 = 5$$

•
$$W = 8$$

• optimum $S = \{1, 4\}$ with weight 8 and value 7

See also:

• fractional knapsack (items can be divided), solved with a greedy algorithm

Setting up the recurrence

Basic idea: either we choose item n or not.

• then the optimum O[W, n] is the max of two values:

•
$$v_n + O[W - w_n, n - 1]$$
, if we choose $n \pmod{w_n \le W}$

•
$$O[W, n-1]$$
, if we don't choose n

O[w, i] :=maximum value achievable using a knapsack of capacity w and items $1, \dots, i$

Initial conditions

- O[0,i] = 0 for any i
- O[w,0] = 0 for any w

Algorithm

Runtime $\Theta(nW)$.

Discussion

This is called a $\ensuremath{\mathsf{pseudo-polynomial}}$ algorithm

- in our word RAM model, we have been assuming all v_i s and w_i s fit in a word
- so input size is $\Theta(n)$ words

• but the runtime also depends on the **values** of the inputs 01-knapsack is **NP-complete**, so we don't really expect to do much better