
CS 341: Algorithms
Lec 12: Dynamic Programming- Part 2

Armin Jamshidpey Collin Roberts
Based on lecture notes by Éric Schost

David R. Cheriton School of Computer Science, University of Waterloo

Winter 2025

A. Jamshidpey C. Roberts (CS, UW)Lec 12: Dynamic Programming- Part 2 Winter 2025 1 / 7



The Longest Increasing Subsequence Problem

Input: An array A[1..n] of integers

Output: A longest increasing subsequence of A (or just its length)
(does not need to be contiguous)

Example: A = [7, 1, 3, 10, 11, 5, 19] gives [7, 1, 3, 10, 11, 5, 19]

Remark: there are 2n subsequences (including an empty one,
which doesn’t count)

A. Jamshidpey C. Roberts (CS, UW)Lec 12: Dynamic Programming- Part 2 Winter 2025 2 / 7



Tentative subproblems

Attempt 1:

Subproblems: the length ℓ[i] of a longest increasing
subsequence of A[1..i]

on the example, ℓ[6] = 4

so what? not enough to deduce ℓ[7]

Attempt 2:

Subproblems: the length ℓ[i] of a longest increasing
subsequence of A[1..i], together with its last entry

example: ℓ[6] = 4, with last element 11

OK if we can add A[i+ 1], but what if not?

A. Jamshidpey C. Roberts (CS, UW)Lec 12: Dynamic Programming- Part 2 Winter 2025 3 / 7



Tentative subproblems

Attempt 1:

Subproblems: the length ℓ[i] of a longest increasing
subsequence of A[1..i]

on the example, ℓ[6] = 4

so what? not enough to deduce ℓ[7]

Attempt 2:

Subproblems: the length ℓ[i] of a longest increasing
subsequence of A[1..i], together with its last entry

example: ℓ[6] = 4, with last element 11

OK if we can add A[i+ 1], but what if not?

A. Jamshidpey C. Roberts (CS, UW)Lec 12: Dynamic Programming- Part 2 Winter 2025 3 / 7



A more complicated recurrence

Attempt 3:

let L[i] be the length of a longest increasing subsequence of
A[1..i] that ends with A[i], for i = 1, . . . , n

so L[1] = 1

Idea:

a longest increasing subsequence S ending at A[i] looks like

S = [. . . , A[j], A[i]] = S′ cat [A[i]]

S′ is a longest increasing subsequence ending at A[j] (or it
is empty)

don’t know j, but we can try all j < i for which A[j] < A[i]

A. Jamshidpey C. Roberts (CS, UW)Lec 12: Dynamic Programming- Part 2 Winter 2025 4 / 7



Iterative algorithm

LongestIncreasingSubsequence(A[1..n])
1. L[1]← 1
2. for i = 2, . . . , n do
3. L[i]← 1
4. for j = 1, . . . , i− 1 do
5. if A[j] < A[i] then
6. L[i] = max(L[i], L[j] + 1)
7. return the maximum entry in L

Runtime: Θ(n2)

Remark:

the algorithm does not return the sequence itself, but could
be modified to do so

A. Jamshidpey C. Roberts (CS, UW)Lec 12: Dynamic Programming- Part 2 Winter 2025 5 / 7



The Longest Common Subsequence Problem

Input: Arrays A[1..n] and B[1..m] of characters

Output: The maximum length k of a common subsequence to A
and B
(subsequences do not need to be contiguous)

Example: A =blurry, B =burger, longest common subsequence is
burr

Remark: there are 2n subsequences in A, 2m subsequences in B

A. Jamshidpey C. Roberts (CS, UW)Lec 12: Dynamic Programming- Part 2 Winter 2025 6 / 7



A bivariate recurrence

Definition: let M [i, j] be the longest subsequence between
A[1..i] and B[1..j]

M [0, j] = 0 for all j

M [i, 0] = 0 for all i

M [i, j] is the max of up to three values
▶ M [i, j − 1] (don’t use B[j])
▶ M [i− 1, j] (don’t use A[i])
▶ if A[i] = B[j], 1 + M [i − 1, j − 1]

The algorithm computes all M [i, j], using two nested loops, so
runtime Θ(mn)

A. Jamshidpey C. Roberts (CS, UW)Lec 12: Dynamic Programming- Part 2 Winter 2025 7 / 7




