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Edit Distance

Input: arrays A[1..n] and B[1..m] of characters

Output: minimum number of {add, delete, change} operations
that turn A into B

Example: A =snowy, B =sunny
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3C 1A, 1C, 1D
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2A, 1C, 2D

Examples: DNA sequences made of a, c, g, t
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The recurrence

Definition: let D[i, j] be the edit distance between A[1..i] and
B[1..j]

D[0, j] = j for all j (add j characters)

D[i, 0] = i for all i (delete i characters)

D[i, j] is the min of three values
▶ D[i− 1, j − 1] (if A[i] = B[j]) or D[i− 1, j − 1] + 1

(otherwise)
▶ D[i− 1, j]+1 (delete A[i] and match A[1..i− 1] with B[1..j])
▶ D[i, j − 1] + 1 (add B[j] and match A[1..i] with B[1..j − 1])

The algorithm computes all D[i, j], using two nested loops, so
runtime Θ(mn)
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Optimal binary search trees

Input:

integers (or something else) 1, . . . , n

probabilities of access p1, . . . , pn, with p1 + · · ·+ pn = 1

Output:

an optimal BST with keys 1, . . . , n

optimal: minimizes
∑n

i=1 pi · (depth(i) + 1) = expected
number of tests for a search

Example: p1 = p2 = p3 = p4 = p5 = 1/5: ?
See also

optimal static ordering for linked lists

Huffman trees

both built using greedy algorithms
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Setting up the recurrence

Definition define M [i, j] by

M [i, j] = the minimal cost for items {i, . . . , j},
1 ≤ i ≤ j ≤ n

M [i, j] = 0 for j < i

Recurrence

M [i, j] = min
i≤k≤j

(
M [i, k − 1] +

k−1∑
ℓ=i

pℓ + pk +M [k + 1, j] +

j∑
ℓ=k+1

pℓ

)

= min
i≤k≤j

(
M [i, k − 1] +M [k + 1, j]

)
+

j∑
ℓ=i

pℓ

check: gives M [i, i] = pi
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Algorithm

Remark: to get
∑j

ℓ=i pℓ:

compute S[ℓ] = p1 + · · ·+ pℓ, for ℓ = 1, . . . , n

then pi + · · ·+ pj = S[j]− S[i− 1], with S[0] = 0

OptimalBST(p1, . . . , pn, S0, . . . , Sn)

1. for i = 1, . . . , n+ 1
2. M [i, i− 1]← 0
3. for d = 0, . . . , n− 1 d = j − i
4. for i = 1, . . . , n− d
5. j ← d+ i
6. M [i, j]← mini≤k≤j(M [i, k − 1] +M [k + 1, j]) + S[j]− S[i− 1]

Runtime O(n3)
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Independent Sets in Trees
An independent set of a graph G = (V,E), is S ⊆ V if there are
no edges between elements of S.

The maximum independent set problem (for a general graph):
input: G(V,E)
Output: An independent set of maximum cardinality.

Example (not a tree):

1 2

34

S = {1, 3}.
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Algorithm (sketch)

I(v) := size of largest independent set of subtree rooted at v

I(v) = max{1 +
∑

grandchildren u of v

I(u),
∑

children u of v

I(u)}
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