
CS 341: Algorithms
Lec 13: Dynamic Programming- Part 3

Armin Jamshidpey Collin Roberts
Based on lecture notes by Éric Schost

David R. Cheriton School of Computer Science, University of Waterloo

Winter 2025

A. Jamshidpey C. Roberts (CS, UW) Lec 13: DP Part 3 Winter 2025 1 / 8



Edit Distance

Input: arrays A[1..n] and B[1..m] of characters

Output: minimum number of {add, delete, change} operations
that turn A into B

Example: A =snowy, B =sunny

s n o w y

s u n n y

s n o w y

s u n n y

3C 1A, 1C, 1D

s n o w y

s u n n y

2A, 1C, 2D

Examples: DNA sequences made of a, c, g, t

A. Jamshidpey C. Roberts (CS, UW) Lec 13: DP Part 3 Winter 2025 2 / 8



The recurrence

Definition: let D[i, j] be the edit distance between A[1..i] and
B[1..j]

D[0, j] = j for all j (add j characters)

D[i, 0] = i for all i (delete i characters)

D[i, j] is the min of three values
▶ D[i− 1, j − 1] (if A[i] = B[j]) or D[i− 1, j − 1] + 1

(otherwise)
▶ D[i− 1, j]+1 (delete A[i] and match A[1..i− 1] with B[1..j])
▶ D[i, j − 1] + 1 (add B[j] and match A[1..i] with B[1..j − 1])

The algorithm computes all D[i, j], using two nested loops, so
runtime Θ(mn)

A. Jamshidpey C. Roberts (CS, UW) Lec 13: DP Part 3 Winter 2025 3 / 8



Optimal binary search trees

Input:

integers (or something else) 1, . . . , n

probabilities of access p1, . . . , pn, with p1 + · · ·+ pn = 1

Output:

an optimal BST with keys 1, . . . , n

optimal: minimizes
∑n

i=1 pi · (depth(i) + 1) = expected
number of tests for a search

Example: p1 = p2 = p3 = p4 = p5 = 1/5: ?
See also

optimal static ordering for linked lists

Huffman trees

both built using greedy algorithms

A. Jamshidpey C. Roberts (CS, UW) Lec 13: DP Part 3 Winter 2025 4 / 8



Optimal binary search trees

Input:

integers (or something else) 1, . . . , n

probabilities of access p1, . . . , pn, with p1 + · · ·+ pn = 1

Output:

an optimal BST with keys 1, . . . , n

optimal: minimizes
∑n

i=1 pi · (depth(i) + 1) = expected
number of tests for a search

Example: p1 = p2 = p3 = p4 = p5 = 1/5: ?

See also

optimal static ordering for linked lists

Huffman trees

both built using greedy algorithms

A. Jamshidpey C. Roberts (CS, UW) Lec 13: DP Part 3 Winter 2025 4 / 8



Optimal binary search trees

Input:

integers (or something else) 1, . . . , n

probabilities of access p1, . . . , pn, with p1 + · · ·+ pn = 1

Output:

an optimal BST with keys 1, . . . , n

optimal: minimizes
∑n

i=1 pi · (depth(i) + 1) = expected
number of tests for a search

Example: p1 = p2 = p3 = p4 = p5 = 1/5: ?
See also

optimal static ordering for linked lists

Huffman trees

both built using greedy algorithms

A. Jamshidpey C. Roberts (CS, UW) Lec 13: DP Part 3 Winter 2025 4 / 8



Setting up the recurrence

Definition define M [i, j] by

M [i, j] = the minimal cost for items {i, . . . , j},
1 ≤ i ≤ j ≤ n

M [i, j] = 0 for j < i

Recurrence

M [i, j] = min
i≤k≤j

(
M [i, k − 1] +

k−1∑
ℓ=i

pℓ + pk +M [k + 1, j] +

j∑
ℓ=k+1

pℓ

)

= min
i≤k≤j

(
M [i, k − 1] +M [k + 1, j]

)
+

j∑
ℓ=i

pℓ

check: gives M [i, i] = pi

A. Jamshidpey C. Roberts (CS, UW) Lec 13: DP Part 3 Winter 2025 5 / 8



Algorithm

Remark: to get
∑j

ℓ=i pℓ:

compute S[ℓ] = p1 + · · ·+ pℓ, for ℓ = 1, . . . , n

then pi + · · ·+ pj = S[j]− S[i− 1], with S[0] = 0

OptimalBST(p1, . . . , pn, S0, . . . , Sn)

1. for i = 1, . . . , n+ 1
2. M [i, i− 1]← 0
3. for d = 0, . . . , n− 1 d = j − i
4. for i = 1, . . . , n− d
5. j ← d+ i
6. M [i, j]← mini≤k≤j(M [i, k − 1] +M [k + 1, j]) + S[j]− S[i− 1]

Runtime O(n3)

A. Jamshidpey C. Roberts (CS, UW) Lec 13: DP Part 3 Winter 2025 6 / 8



Independent Sets in Trees
An independent set of a graph G = (V,E), is S ⊆ V if there are
no edges between elements of S.

The maximum independent set problem (for a general graph):
input: G(V,E)
Output: An independent set of maximum cardinality.

Example (not a tree):

1 2

34

S = {1, 3}.
A. Jamshidpey C. Roberts (CS, UW) Lec 13: DP Part 3 Winter 2025 7 / 8



Algorithm (sketch)

I(v) := size of largest independent set of subtree rooted at v

I(v) = max{1 +
∑

grandchildren u of v

I(u),
∑

children u of v

I(u)}

A. Jamshidpey C. Roberts (CS, UW) Lec 13: DP Part 3 Winter 2025 8 / 8



Algorithm (sketch)

I(v) := size of largest independent set of subtree rooted at v

I(v) = max{1 +
∑

grandchildren u of v

I(u),
∑

children u of v

I(u)}

A. Jamshidpey C. Roberts (CS, UW) Lec 13: DP Part 3 Winter 2025 8 / 8




