
Module 3 Divide and Conquer

Some slides borrowed from CS 240.
Thanks to Anna Lubiw and other previous CS 341 instructors.

Divide and Conquer Algorithm Basics
Examples from previous courses
Recurrence Relations
Solving Recurrences by Recursion Tree
Solving Recurrences with the Substitution Method (“Lucky Guess”)
More Examples

Petrick (SCS, UW) CS341 – Module Divide and Conquer Fall 2022 1 / 30

Divide and Conquer Algorithm Basics

In previous courses, we covered a few Divide and Conquer algorithms but
maybe didn’t specifically define the term.

Divide and Conquer algorithms are broken into 3 basic steps:
1 Divide - break the problem into smaller instances of the problem
2 Recurse - use recursion to solve the smaller problems
3 Conquer - combine the results of the smaller problems to solve the

initial larger problem

Petrick (SCS, UW) CS341 – Module Divide and Conquer Fall 2022 2 / 30

Examples from previous courses

Binary Search: Search for an element k in a sorted array A.
Note: we may have implemented this iteratively but it has a natural
recursive implementation as well.

Compute the middle index m of A and compare with k.
If k = A[m] then return FOUND
Else If k is smaller than A[m] then recurse on left half of A
Else (k is larger than A[m]) so recurse on right half of A

Binary Search only recurses on one of the subproblems and simply returns
what the subproblem returns.

Analysis (worst-case): T (n) = 1 + T (n/2) but this assumes n always
divides evenly.
Rigorously, T (n) = 1 + max{T (⌊n/2⌋), T (⌈n/2⌉)}.
These resolve to: T (n) ∈ O(log n).

Petrick (SCS, UW) CS341 – Module Divide and Conquer Fall 2022 3 / 30

Examples from previous courses - Sorting

QuickSort(A):
Partition array based on a given pivot ⇒ O(n) work to divide.
2 Subproblems: Pivot divides A into Left and right subarrays, recurse
on both.
Conquer step is easy - does nothing if algorithm is "in-place".

Analysis:
Worst-case: T (n) = O(n) + T (n − 1) ∈ O(n2)
Best-case: T (n) = O(n) + 2T (n/2) ∈ O(n log n)
Average Case: O(n log n)
Randomized (each pivot choice is equally likely): Expected O(n log n)

Petrick (SCS, UW) CS341 – Module Divide and Conquer Fall 2022 4 / 30

Examples from previous courses - Sorting

MergeSort(A):
Divide array into left and right halves.
2 Subproblems: Left and right half subarrays, recurse on both.
Merge the two sorted arrays ⇒ O(n) work to conquer.

Analysis:
Best-case/Worst-case: T (n) = 2T (n/2) + O(n) ∈ O(n log n)
Rigorously, T (n) = T (⌊n/2⌋) + T (⌈n/2⌉) + cn

Petrick (SCS, UW) CS341 – Module Divide and Conquer Fall 2022 5 / 30

Solving Recurrence Relations

CS 240 typically only expected you to simply expand a few steps and find
the pattern but introduced the ideas of a recursion tree and the
substitution method.

Expected recursion-depth for QuickSort
n

i n−i−1

Goal: Analyze expected height of re-
cursion tree.

Define H(π, R) := its height for in-
stance π and outcomes R.

Hexp(n) = maxπ
∑

R Pr(R)H(π, R).

Formula: Hexp(n) ≤ 1 + 1
n

∑n−1
i=0 max{Hexp(i), Hexp(n−i−1)}

Claim: Hexp(n) ≤ O(log n).
Proof: By Induction ...

Petrick (SCS, UW) CS341 – Module Divide and Conquer Fall 2022 6 / 30

Solving Recurrence Relations

CS 240 typically only expected you to simply expand a few steps and find
the pattern but introduced the ideas of a recursion tree and the
substitution method.

Expected recursion-depth for QuickSort
n

i n−i−1

Goal: Analyze expected height of re-
cursion tree.

Define H(π, R) := its height for in-
stance π and outcomes R.

Hexp(n) = maxπ
∑

R Pr(R)H(π, R).

Formula: Hexp(n) ≤ 1 + 1
n

∑n−1
i=0 max{Hexp(i), Hexp(n−i−1)}

Claim: Hexp(n) ≤ O(log n).
Proof: By Induction ...

Petrick (SCS, UW) CS341 – Module Divide and Conquer Fall 2022 6 / 30

Solving Recurrence Relations

CS 240 typically only expected you to simply expand a few steps and find
the pattern but introduced the ideas of a recursion tree and the
substitution method.

Expected recursion-depth for QuickSort
n

i n−i−1

Goal: Analyze expected height of re-
cursion tree.

Define H(π, R) := its height for in-
stance π and outcomes R.

Hexp(n) = maxπ
∑

R Pr(R)H(π, R).

Formula: Hexp(n) ≤ 1 + 1
n

∑n−1
i=0 max{Hexp(i), Hexp(n−i−1)}

Claim: Hexp(n) ≤ O(log n).
Proof: By Induction ...

Petrick (SCS, UW) CS341 – Module Divide and Conquer Fall 2022 6 / 30

Recursion Tree for MergeSort

T (n) = 2T (n/2) + cn, if n is even
T (1) = 0, if counting number of comparisons

Recursion Tree where n is a power of 2:

Total work in the recursion tree sums to: c · n log n

Petrick (SCS, UW) CS341 – Module Divide and Conquer Fall 2022 7 / 30

Solving Mergesort

If we want to be precise, the math is not trivial:

T (n) =
{

T
(
⌈n

2⌉
)

+ T
(
⌊n

2⌋
)

+ (n − 1) if n > 1
0 if n = 1

Resolves to T (n) = n⌈log n⌉ − 2⌈log n⌉ + 1

The recursion tree method finds the exact solution of the recurrence when
n is a power of 2, T (n) ∈ O(n log n).

When given n that is not a power of 2, we can also argue that performing
the analysis using n′ = smallest power of 2 larger than n will also give a
precise result since n′ < 2 · n, runtimes are typically increasing and we only
want the growth rate.

Petrick (SCS, UW) CS341 – Module Divide and Conquer Fall 2022 8 / 30

Solving Mergesort

If we want to be precise, the math is not trivial:

T (n) =
{

T
(
⌈n

2⌉
)

+ T
(
⌊n

2⌋
)

+ (n − 1) if n > 1
0 if n = 1

Resolves to T (n) = n⌈log n⌉ − 2⌈log n⌉ + 1

The recursion tree method finds the exact solution of the recurrence when
n is a power of 2, T (n) ∈ O(n log n).

When given n that is not a power of 2, we can also argue that performing
the analysis using n′ = smallest power of 2 larger than n will also give a
precise result since n′ < 2 · n, runtimes are typically increasing and we only
want the growth rate.

Petrick (SCS, UW) CS341 – Module Divide and Conquer Fall 2022 8 / 30

Solving Mergesort

If we want to be precise, the math is not trivial:

T (n) =
{

T
(
⌈n

2⌉
)

+ T
(
⌊n

2⌋
)

+ (n − 1) if n > 1
0 if n = 1

Resolves to T (n) = n⌈log n⌉ − 2⌈log n⌉ + 1

The recursion tree method finds the exact solution of the recurrence when
n is a power of 2, T (n) ∈ O(n log n).

When given n that is not a power of 2, we can also argue that performing
the analysis using n′ = smallest power of 2 larger than n will also give a
precise result since n′ < 2 · n, runtimes are typically increasing and we only
want the growth rate.

Petrick (SCS, UW) CS341 – Module Divide and Conquer Fall 2022 8 / 30

Solving Recurrences by Substitution

Also known as “Lucky Guess”, “Guess and Check”, “Guess and Prove”, ...

T (n) =
{

T
(
⌈n

2⌉
)

+ T
(
⌊n

2⌋
)

+ (n − 1) if n > 1
0 if n = 1

Guess and prove by Induction that T (n) ≤ c · n log n,∀n ≥ 1.

Base case: For n = 1, T (1) = 0 and c · n log n = 0; i.e. 0 ≤ 0.

Induction Hypothesis: Assume that T (k) ≤ c · k log k for all k < n
where k ≥ 2.

Induction Step: One method to give a rigorous proof is to separate into
even and odd cases. If n is even, we don’t need floors and ceilings. If n is
odd, ...

Petrick (SCS, UW) CS341 – Module Divide and Conquer Fall 2022 9 / 30

Solving Recurrences by Substitution

Also known as “Lucky Guess”, “Guess and Check”, “Guess and Prove”, ...

T (n) =
{

T
(
⌈n

2⌉
)

+ T
(
⌊n

2⌋
)

+ (n − 1) if n > 1
0 if n = 1

Guess and prove by Induction that T (n) ≤ c · n log n,∀n ≥ 1.

Base case: For n = 1, T (1) = 0 and c · n log n = 0; i.e. 0 ≤ 0.

Induction Hypothesis: Assume that T (k) ≤ c · k log k for all k < n
where k ≥ 2.

Induction Step: One method to give a rigorous proof is to separate into
even and odd cases. If n is even, we don’t need floors and ceilings. If n is
odd, ...

Petrick (SCS, UW) CS341 – Module Divide and Conquer Fall 2022 9 / 30

Solving Recurrences by Substitution

Also known as “Lucky Guess”, “Guess and Check”, “Guess and Prove”, ...

T (n) =
{

T
(
⌈n

2⌉
)

+ T
(
⌊n

2⌋
)

+ (n − 1) if n > 1
0 if n = 1

Guess and prove by Induction that T (n) ≤ c · n log n,∀n ≥ 1.

Base case: For n = 1, T (1) = 0 and c · n log n = 0; i.e. 0 ≤ 0.

Induction Hypothesis: Assume that T (k) ≤ c · k log k for all k < n
where k ≥ 2.

Induction Step: One method to give a rigorous proof is to separate into
even and odd cases. If n is even, we don’t need floors and ceilings. If n is
odd, ...

Petrick (SCS, UW) CS341 – Module Divide and Conquer Fall 2022 9 / 30

Careful! Watchout!

T (n) = 2T (n/2) + n
Claim: T (n) ∈ O(n)

Prove T (n) ≤ cn,∀n ≥ n0.

Induction Hypothesis: Assume T (k) ≤ c · k,∀k < n, k ≥ n0.

T (n) = 2T (n/2) + n
≤ 2c(n/2) + n by the Induction Hypothesis
= (c + 1)n

Conclusion: T (n) ∈ O(n).

The conclusion is clearly incorrect!
The problem is the constant is continuously growing.

Petrick (SCS, UW) CS341 – Module Divide and Conquer Fall 2022 10 / 30

Careful! Watchout!

T (n) = 2T (n/2) + n
Claim: T (n) ∈ O(n)

Prove T (n) ≤ cn,∀n ≥ n0.

Induction Hypothesis: Assume T (k) ≤ c · k,∀k < n, k ≥ n0.

T (n) = 2T (n/2) + n
≤ 2c(n/2) + n by the Induction Hypothesis
= (c + 1)n

Conclusion: T (n) ∈ O(n).

The conclusion is clearly incorrect!
The problem is the constant is continuously growing.

Petrick (SCS, UW) CS341 – Module Divide and Conquer Fall 2022 10 / 30

Careful! Watchout!

T (n) = 2T (n/2) + n
Claim: T (n) ∈ O(n)

Prove T (n) ≤ cn,∀n ≥ n0.

Induction Hypothesis: Assume T (k) ≤ c · k,∀k < n, k ≥ n0.

T (n) = 2T (n/2) + n
≤ 2c(n/2) + n by the Induction Hypothesis
= (c + 1)n

Conclusion: T (n) ∈ O(n).

The conclusion is clearly incorrect!
The problem is the constant is continuously growing.

Petrick (SCS, UW) CS341 – Module Divide and Conquer Fall 2022 10 / 30

Substitution - Changing the Guess

T (n) =
{

T
(
⌈n

2⌉
)

+ T
(
⌊n

2⌋
)

+ 1 if n > 1
1 if n = 1

Guess T (n) ∈ O(n).
Prove by induction that T (n) ≤ cn for some constant c.

Induction Step:

T (n) = T (⌈n2⌉) + T (⌊n2⌋) + 1

≤ c · ⌈n2⌉+ c · ⌊n2⌋+ 1

= cn + 1

What went wrong?
Fix? Add a lower order term: Try T (n) ≤ cn − 1.
T (n) ≤ c · ⌈n

2⌉ − 1 + c · ⌊n
2⌋ − 1 + 1 = cn − 1

Petrick (SCS, UW) CS341 – Module Divide and Conquer Fall 2022 11 / 30

Substitution - Changing the Guess

T (n) =
{

T
(
⌈n

2⌉
)

+ T
(
⌊n

2⌋
)

+ 1 if n > 1
1 if n = 1

Guess T (n) ∈ O(n).
Prove by induction that T (n) ≤ cn for some constant c.

Induction Step:

T (n) = T (⌈n2⌉) + T (⌊n2⌋) + 1

≤ c · ⌈n2⌉+ c · ⌊n2⌋+ 1

= cn + 1

What went wrong?
Fix? Add a lower order term: Try T (n) ≤ cn − 1.
T (n) ≤ c · ⌈n

2⌉ − 1 + c · ⌊n
2⌋ − 1 + 1 = cn − 1

Petrick (SCS, UW) CS341 – Module Divide and Conquer Fall 2022 11 / 30

Substitution - Changing the Guess

T (n) =
{

T
(
⌈n

2⌉
)

+ T
(
⌊n

2⌋
)

+ 1 if n > 1
1 if n = 1

Guess T (n) ∈ O(n).
Prove by induction that T (n) ≤ cn for some constant c.

Induction Step:

T (n) = T (⌈n2⌉) + T (⌊n2⌋) + 1

≤ c · ⌈n2⌉+ c · ⌊n2⌋+ 1

= cn + 1

What went wrong?

Fix? Add a lower order term: Try T (n) ≤ cn − 1.
T (n) ≤ c · ⌈n

2⌉ − 1 + c · ⌊n
2⌋ − 1 + 1 = cn − 1

Petrick (SCS, UW) CS341 – Module Divide and Conquer Fall 2022 11 / 30

Substitution - Changing the Guess

T (n) =
{

T
(
⌈n

2⌉
)

+ T
(
⌊n

2⌋
)

+ 1 if n > 1
1 if n = 1

Guess T (n) ∈ O(n).
Prove by induction that T (n) ≤ cn for some constant c.

Induction Step:

T (n) = T (⌈n2⌉) + T (⌊n2⌋) + 1

≤ c · ⌈n2⌉+ c · ⌊n2⌋+ 1

= cn + 1

What went wrong?
Fix? Add a lower order term: Try T (n) ≤ cn − 1.

T (n) ≤ c · ⌈n
2⌉ − 1 + c · ⌊n

2⌋ − 1 + 1 = cn − 1

Petrick (SCS, UW) CS341 – Module Divide and Conquer Fall 2022 11 / 30

Substitution - Changing the Guess

T (n) =
{

T
(
⌈n

2⌉
)

+ T
(
⌊n

2⌋
)

+ 1 if n > 1
1 if n = 1

Guess T (n) ∈ O(n).
Prove by induction that T (n) ≤ cn for some constant c.

Induction Step:

T (n) = T (⌈n2⌉) + T (⌊n2⌋) + 1

≤ c · ⌈n2⌉+ c · ⌊n2⌋+ 1

= cn + 1

What went wrong?
Fix? Add a lower order term: Try T (n) ≤ cn − 1.
T (n) ≤ c · ⌈n

2⌉ − 1 + c · ⌊n
2⌋ − 1 + 1 = cn − 1

Petrick (SCS, UW) CS341 – Module Divide and Conquer Fall 2022 11 / 30

Substituion - Changing Variables

T (n) = 2T (⌊
√

n⌋) + log n
Let m = log n so n = 2m.
Our new recurrence relation is:

T (2m) = 2T (2m/2) + m

Let S(m) = T (2m) so S(m/2) = T (2m/2).

Then S(m) = 2S(m/2) + m which is a recurrence we know.

S(m) ∈ O(m log m) so T (2m) ∈ O(m log m) and

T (n) ∈ O((log n)(log log n))

Petrick (SCS, UW) CS341 – Module Divide and Conquer Fall 2022 12 / 30

Substituion - Changing Variables

T (n) = 2T (⌊
√

n⌋) + log n
Let m = log n so n = 2m.
Our new recurrence relation is:

T (2m) = 2T (2m/2) + m

Let S(m) = T (2m) so S(m/2) = T (2m/2).

Then S(m) = 2S(m/2) + m which is a recurrence we know.

S(m) ∈ O(m log m) so T (2m) ∈ O(m log m) and

T (n) ∈ O((log n)(log log n))

Petrick (SCS, UW) CS341 – Module Divide and Conquer Fall 2022 12 / 30

Substituion - Changing Variables

T (n) = 2T (⌊
√

n⌋) + log n
Let m = log n so n = 2m.
Our new recurrence relation is:

T (2m) = 2T (2m/2) + m

Let S(m) = T (2m) so S(m/2) = T (2m/2).

Then S(m) = 2S(m/2) + m which is a recurrence we know.

S(m) ∈ O(m log m) so T (2m) ∈ O(m log m) and

T (n) ∈ O((log n)(log log n))

Petrick (SCS, UW) CS341 – Module Divide and Conquer Fall 2022 12 / 30

Example
Some websites attempt to make suggestions (or target advertising) to you
based on matching you with previous users and observing what they were
interested in.

Similarity of users is based on similarity of preferences. Given a set of
items A, B, C , D, a user ranks them by most favourite to least favourite.

Given 2 rankings, how do you compare similarity?

Ranking 1: B D C A

Ranking 2: A D B C

How many exact matches are there? 1 (only D at the same index)
Maybe try ordering of pairs? How many pairs of distinct items?

(4
2
)

= 6

Are these 2 rankings similar? How many pairs (X , Y) have the same order?
2 : Both prefer B over C and D over C → pairs BC and CD.
Not very similar - 4 pairs are inverted: AB AC AD BD, not very similar .

Petrick (SCS, UW) CS341 – Module Divide and Conquer Fall 2022 13 / 30

Example
Some websites attempt to make suggestions (or target advertising) to you
based on matching you with previous users and observing what they were
interested in.

Similarity of users is based on similarity of preferences. Given a set of
items A, B, C , D, a user ranks them by most favourite to least favourite.

Given 2 rankings, how do you compare similarity?

Ranking 1: B D C A

Ranking 2: A D B C

How many exact matches are there?

1 (only D at the same index)
Maybe try ordering of pairs? How many pairs of distinct items?

(4
2
)

= 6

Are these 2 rankings similar? How many pairs (X , Y) have the same order?
2 : Both prefer B over C and D over C → pairs BC and CD.
Not very similar - 4 pairs are inverted: AB AC AD BD, not very similar .

Petrick (SCS, UW) CS341 – Module Divide and Conquer Fall 2022 13 / 30

Example
Some websites attempt to make suggestions (or target advertising) to you
based on matching you with previous users and observing what they were
interested in.

Similarity of users is based on similarity of preferences. Given a set of
items A, B, C , D, a user ranks them by most favourite to least favourite.

Given 2 rankings, how do you compare similarity?

Ranking 1: B D C A

Ranking 2: A D B C

How many exact matches are there? 1 (only D at the same index)
Maybe try ordering of pairs? How many pairs of distinct items?

(4
2
)

= 6

Are these 2 rankings similar? How many pairs (X , Y) have the same order?
2 : Both prefer B over C and D over C → pairs BC and CD.
Not very similar - 4 pairs are inverted: AB AC AD BD, not very similar .

Petrick (SCS, UW) CS341 – Module Divide and Conquer Fall 2022 13 / 30

Example
Some websites attempt to make suggestions (or target advertising) to you
based on matching you with previous users and observing what they were
interested in.

Similarity of users is based on similarity of preferences. Given a set of
items A, B, C , D, a user ranks them by most favourite to least favourite.

Given 2 rankings, how do you compare similarity?

Ranking 1: B D C A

Ranking 2: A D B C

How many exact matches are there? 1 (only D at the same index)
Maybe try ordering of pairs? How many pairs of distinct items?

(4
2
)

= 6

Are these 2 rankings similar? How many pairs (X , Y) have the same order?
2 : Both prefer B over C and D over C → pairs BC and CD.
Not very similar - 4 pairs are inverted: AB AC AD BD, not very similar .

Petrick (SCS, UW) CS341 – Module Divide and Conquer Fall 2022 13 / 30

Example: Counting Inversions
Problem
Counting Inversions
Instance: Given 2 rankings of items {a1, . . . , an}
Find: The number of inverted pairs of items between the rankings; i.e.
pairs where one ranking prefers ai over aj but the other prefers aj over ai .

Observe: If we draw edges between the same items in both rankings, the
number of edge crossings is the number of inversions.

An equivalent formulation is to assign numbers to each item, then
compare the order of numbers. For simplicity, assign the numbers in order
to the first ranking:
B D C A ⇒ 1 2 3 4

Using the same mapping, the second ranking becomes:
A D B C ⇒ 4 2 1 3
The problem of counting the number of inversions now becomes ...

Petrick (SCS, UW) CS341 – Module Divide and Conquer Fall 2022 14 / 30

Example: Counting Inversions
Problem
Counting Inversions
Instance: Given 2 rankings of items {a1, . . . , an}
Find: The number of inverted pairs of items between the rankings; i.e.
pairs where one ranking prefers ai over aj but the other prefers aj over ai .

Observe: If we draw edges between the same items in both rankings, the
number of edge crossings is the number of inversions.
An equivalent formulation is to assign numbers to each item, then
compare the order of numbers. For simplicity, assign the numbers in order
to the first ranking:
B D C A ⇒ 1 2 3 4

Using the same mapping, the second ranking becomes:
A D B C

⇒ 4 2 1 3
The problem of counting the number of inversions now becomes ...

Petrick (SCS, UW) CS341 – Module Divide and Conquer Fall 2022 14 / 30

Example: Counting Inversions
Problem
Counting Inversions
Instance: Given 2 rankings of items {a1, . . . , an}
Find: The number of inverted pairs of items between the rankings; i.e.
pairs where one ranking prefers ai over aj but the other prefers aj over ai .

Observe: If we draw edges between the same items in both rankings, the
number of edge crossings is the number of inversions.
An equivalent formulation is to assign numbers to each item, then
compare the order of numbers. For simplicity, assign the numbers in order
to the first ranking:
B D C A ⇒ 1 2 3 4

Using the same mapping, the second ranking becomes:
A D B C ⇒ 4 2 1 3
The problem of counting the number of inversions now becomes ...

Petrick (SCS, UW) CS341 – Module Divide and Conquer Fall 2022 14 / 30

Example: Counting Inversions
The problem of counting the number of inversions now becomes:
count the number of pairs that are out of order in the 2nd list.

Brute Force:

Check all
(n

2
)

pairs, requires O(n2) time.
Does sorting help? Not really since we check all pairs.

Divide and Conquer Method: Given a list L = a1, . . . , an of numbers,
count the number of inversions.

Divide L into 2 lists at m = ⌈n
2⌉: A = a1, . . . , am and

B = am+1, . . . , an

Recursively count number of inversions in A and B ⇒ return counts
rA and rB

Combine the results: rA + rB + r . What is r?
r := number of inversions with one element in A and one in B; i.e.
number of pairs (ai , aj) with ai ∈ A and aj ∈ B and ai > aj

Petrick (SCS, UW) CS341 – Module Divide and Conquer Fall 2022 15 / 30

Example: Counting Inversions
The problem of counting the number of inversions now becomes:
count the number of pairs that are out of order in the 2nd list.

Brute Force: Check all
(n

2
)

pairs, requires O(n2) time.
Does sorting help? Not really since we check all pairs.

Divide and Conquer Method: Given a list L = a1, . . . , an of numbers,
count the number of inversions.

Divide L into 2 lists at m = ⌈n
2⌉: A = a1, . . . , am and

B = am+1, . . . , an

Recursively count number of inversions in A and B ⇒ return counts
rA and rB

Combine the results: rA + rB + r . What is r?
r := number of inversions with one element in A and one in B; i.e.
number of pairs (ai , aj) with ai ∈ A and aj ∈ B and ai > aj

Petrick (SCS, UW) CS341 – Module Divide and Conquer Fall 2022 15 / 30

Example: Counting Inversions
The problem of counting the number of inversions now becomes:
count the number of pairs that are out of order in the 2nd list.

Brute Force: Check all
(n

2
)

pairs, requires O(n2) time.
Does sorting help? Not really since we check all pairs.

Divide and Conquer Method: Given a list L = a1, . . . , an of numbers,
count the number of inversions.

Divide L into 2 lists at m = ⌈n
2⌉: A = a1, . . . , am and

B = am+1, . . . , an

Recursively count number of inversions in A and B ⇒ return counts
rA and rB

Combine the results: rA + rB + r . What is r?

r := number of inversions with one element in A and one in B; i.e.
number of pairs (ai , aj) with ai ∈ A and aj ∈ B and ai > aj

Petrick (SCS, UW) CS341 – Module Divide and Conquer Fall 2022 15 / 30

Example: Counting Inversions
The problem of counting the number of inversions now becomes:
count the number of pairs that are out of order in the 2nd list.

Brute Force: Check all
(n

2
)

pairs, requires O(n2) time.
Does sorting help? Not really since we check all pairs.

Divide and Conquer Method: Given a list L = a1, . . . , an of numbers,
count the number of inversions.

Divide L into 2 lists at m = ⌈n
2⌉: A = a1, . . . , am and

B = am+1, . . . , an

Recursively count number of inversions in A and B ⇒ return counts
rA and rB

Combine the results: rA + rB + r . What is r?
r := number of inversions with one element in A and one in B; i.e.
number of pairs (ai , aj) with ai ∈ A and aj ∈ B and ai > aj

Petrick (SCS, UW) CS341 – Module Divide and Conquer Fall 2022 15 / 30

Example: Counting Inversions

How do we find r?

Count: For each aj ∈ B, count the number of items, rj , in A that are
larger than aj ; i.e. r =

∑
aj ∈B

rj

Now, it would help if A and B are sorted and also, for the combine step to
return a sorted list. Think about how we can modify mergesort to
compute r ; modify the merge process.

When aj is copied into the merged list (combined sorted list), determine rj
and add to r .

Petrick (SCS, UW) CS341 – Module Divide and Conquer Fall 2022 16 / 30

Example: Counting Inversions

How do we find r?

Count: For each aj ∈ B, count the number of items, rj , in A that are
larger than aj ; i.e. r =

∑
aj ∈B

rj

Now, it would help if A and B are sorted and also, for the combine step to
return a sorted list. Think about how we can modify mergesort to
compute r ; modify the merge process.

When aj is copied into the merged list (combined sorted list), determine rj
and add to r .

Petrick (SCS, UW) CS341 – Module Divide and Conquer Fall 2022 16 / 30

Example: Counting Inversions

Algorithm: Sort-and-Count(L) returns a sorted L and number of
inversions.

Divide L at midpoint into A and B
Sort-and-Count(A) returns (sorted A, rA)
Sort-and-Count(B) returns (sorted B, rB)
r ← 0
Merge(A, B) and when an element of B is chosen to merge,
r ← r + number of elements remaining in A
return (sorted A ∪ B, rA + rB + r)

Analysis:

Similar to mergesort: T (n) = 2T (n/2) + O(n) ∈ O(n log n)
Better Algorithms?

Petrick (SCS, UW) CS341 – Module Divide and Conquer Fall 2022 17 / 30

Example: Counting Inversions

Algorithm: Sort-and-Count(L) returns a sorted L and number of
inversions.

Divide L at midpoint into A and B
Sort-and-Count(A) returns (sorted A, rA)
Sort-and-Count(B) returns (sorted B, rB)
r ← 0
Merge(A, B) and when an element of B is chosen to merge,
r ← r + number of elements remaining in A
return (sorted A ∪ B, rA + rB + r)

Analysis: Similar to mergesort: T (n) = 2T (n/2) + O(n) ∈ O(n log n)
Better Algorithms?

Petrick (SCS, UW) CS341 – Module Divide and Conquer Fall 2022 17 / 30

Common Recurrences
We often see recurrences of the form:

T (n) = aT (n
b) + cnk

Example: Mergesort k = 1, a = 2, b = 2

T (n) = 2T (n
2) + cn ∈ O(n log n)

Example: k = 1, a = 1, b = 2

T (n) = T (n
2) + cn ∈ O(n)

Example: k = 1, a = 4, b = 2

T (n) = 4T (n
2) + cn ∈ O(n2)

Petrick (SCS, UW) CS341 – Module Divide and Conquer Fall 2022 18 / 30

Master Theorem

Theorem: Given
T (n) = aT (n

b) + cnk

where a ≥ 1, b > 1, c > 0, k ≥ 0, then

T (n) ∈


Θ(nk) if a < bk i.e. logb a < k
Θ(nk log n) if a = bk

Θ(nlogb a) if a > bk

Proof: For a rigorous proof, use induction.
Less rigorous, think about the recursion tree.

Petrick (SCS, UW) CS341 – Module Divide and Conquer Fall 2022 19 / 30

Multiplying Large Numbers
Recall: grade 2 method ⇒ multiplying two n−digit numbers ∈ O(n2)
How about an n−digit number with an m−digit number? Exercise

Divide and Conquer Method:
Idea: Split numbers in half (by digits), multiply smaller components.
Easier if both have same number of digits ⇒ pad with 0 if necessary.

Example: Multiply 667 (0667) with 1234
06|67× 12|34 becomes the sum of:

06× 12⇒ 720000 (72 shifted 4 digits)
06× 34⇒ 20400 (204 shifted 2 digits)
67× 12⇒ 80400 (804 shifted 2 digits)
67× 34⇒ 2278
Total sum: 823078

Use recursion until numbers are small enough: 0|6× 1|2, etc

Petrick (SCS, UW) CS341 – Module Divide and Conquer Fall 2022 20 / 30

Multiplying Large Numbers
Recall: grade 2 method ⇒ multiplying two n−digit numbers ∈ O(n2)
How about an n−digit number with an m−digit number? Exercise

Divide and Conquer Method:
Idea: Split numbers in half (by digits), multiply smaller components.
Easier if both have same number of digits ⇒ pad with 0 if necessary.

Example: Multiply 667 (0667) with 1234
06|67× 12|34 becomes the sum of:

06× 12⇒ 720000 (72 shifted 4 digits)
06× 34⇒ 20400 (204 shifted 2 digits)
67× 12⇒ 80400 (804 shifted 2 digits)
67× 34⇒ 2278
Total sum: 823078

Use recursion until numbers are small enough: 0|6× 1|2, etc

Petrick (SCS, UW) CS341 – Module Divide and Conquer Fall 2022 20 / 30

Multiplying Large Numbers

Analysis: T (n) = 4T (n/2) + O(n)
Apply the Master Theorem: a = 4, b = 2, k = 1 and compare a with bk

⇒ 4 > 2, so Case 3: T (n) ∈ Θ(nlogb a)

∈ Θ(n2)

Petrick (SCS, UW) CS341 – Module Divide and Conquer Fall 2022 21 / 30

Multiplying Large Numbers

Analysis: T (n) = 4T (n/2) + O(n)
Apply the Master Theorem: a = 4, b = 2, k = 1 and compare a with bk

⇒ 4 > 2, so Case 3: T (n) ∈ Θ(nlogb a) ∈ Θ(n2)

Petrick (SCS, UW) CS341 – Module Divide and Conquer Fall 2022 21 / 30

Karatsuba’s Algorithm (1960)
Idea: Avoid one of the four multiplications!
Consider 0667× 1234 where w = 06, x = 67, y = 12, z = 34, then
wx × yz ⇒ w |x × y |z

= (102w + x)× (102y + z)
= 104wy + 102(wz + xy) + xz

Don’t need wz , xy individually, only the sum (wz + xy).

(w + x)× (y + z) = wy + (wz + xy) + xz
⇒ (wz + xy) = (w + x)× (y + z)− wy − xz
We already compute wy and xz . Only 3 multiplications.

Algorithm
p ⇒ wy
q ⇒ xz
r ⇒ (w + x)× (y + z)
return 104p + 102(r − p − q) + q

Petrick (SCS, UW) CS341 – Module Divide and Conquer Fall 2022 22 / 30

Karatsuba’s Algorithm (1960)
Idea: Avoid one of the four multiplications!
Consider 0667× 1234 where w = 06, x = 67, y = 12, z = 34, then
wx × yz ⇒ w |x × y |z

= (102w + x)× (102y + z)
= 104wy + 102(wz + xy) + xz

Don’t need wz , xy individually, only the sum (wz + xy).

(w + x)× (y + z) = wy + (wz + xy) + xz
⇒ (wz + xy) = (w + x)× (y + z)− wy − xz
We already compute wy and xz . Only 3 multiplications.

Algorithm
p ⇒ wy
q ⇒ xz
r ⇒ (w + x)× (y + z)
return 104p + 102(r − p − q) + q

Petrick (SCS, UW) CS341 – Module Divide and Conquer Fall 2022 22 / 30

Karatsuba’s Algorithm (1960)
Idea: Avoid one of the four multiplications!
Consider 0667× 1234 where w = 06, x = 67, y = 12, z = 34, then
wx × yz ⇒ w |x × y |z

= (102w + x)× (102y + z)
= 104wy + 102(wz + xy) + xz

Don’t need wz , xy individually, only the sum (wz + xy).

(w + x)× (y + z) = wy + (wz + xy) + xz
⇒ (wz + xy) = (w + x)× (y + z)− wy − xz
We already compute wy and xz . Only 3 multiplications.

Algorithm
p ⇒ wy
q ⇒ xz
r ⇒ (w + x)× (y + z)
return 104p + 102(r − p − q) + q

Petrick (SCS, UW) CS341 – Module Divide and Conquer Fall 2022 22 / 30

Karatsuba’s Algorithm (1960)

Note: Additions are only linear in number of digits, O(n)

Analysis: T (n) = 3T (n/2) + O(n)

Master Theorem: a = 3, b = 2, k = 1 and compare a with bk

a = 3 > bk = 2, so Case 3: T (n) ∈ Θ(nlogb a)

T (n) ∈ Θ(nlogb a) = Θ(nlog2 3) ≈ Θ(n1.585)

Better Algorithms? Asymptotically faster methods for larger n.
Schönhage and Strassen (1971): O(n(log n)(log log n)) (often used)
More recent: O(n log n)

Petrick (SCS, UW) CS341 – Module Divide and Conquer Fall 2022 23 / 30

Karatsuba’s Algorithm (1960)

Note: Additions are only linear in number of digits, O(n)

Analysis: T (n) = 3T (n/2) + O(n)

Master Theorem: a = 3, b = 2, k = 1 and compare a with bk

a = 3 > bk = 2, so Case 3: T (n) ∈ Θ(nlogb a)

T (n) ∈ Θ(nlogb a) = Θ(nlog2 3) ≈ Θ(n1.585)

Better Algorithms? Asymptotically faster methods for larger n.
Schönhage and Strassen (1971): O(n(log n)(log log n)) (often used)
More recent: O(n log n)

Petrick (SCS, UW) CS341 – Module Divide and Conquer Fall 2022 23 / 30

Karatsuba’s Algorithm (1960)

Implementation Concerns
1 Numbers of different lengths - sometimes large differences.

Example: A has n digits, B has m digits and n≫ m.
Break A into O(n/m) blocks of m digits, e.g.

A = 342|3794|3749|4379|4297|7294|9742× 3422 = B

Multiply each block by B
Sum all products (remember to do the shifts)
Analysis: O((n/m)mlog2 3) or O(nm0.585)

2 Which base to use? Base 10 nice for humans. In practice, for
computers, Base 264.
Store large numbers as an array of 64-bit integers (unsigned long):

A = a0 + a1(226) + a2(226)2 + . . . + an−1(226)n−1

⇒ A = a0|a1|a2| . . . |an−1

Petrick (SCS, UW) CS341 – Module Divide and Conquer Fall 2022 24 / 30

Karatsuba’s Algorithm (1960)

Implementation Concerns
1 Numbers of different lengths - sometimes large differences.

Example: A has n digits, B has m digits and n≫ m.
Break A into O(n/m) blocks of m digits, e.g.

A = 342|3794|3749|4379|4297|7294|9742× 3422 = B
Multiply each block by B
Sum all products (remember to do the shifts)
Analysis: O((n/m)mlog2 3) or O(nm0.585)

2 Which base to use? Base 10 nice for humans. In practice, for
computers, Base 264.
Store large numbers as an array of 64-bit integers (unsigned long):

A = a0 + a1(226) + a2(226)2 + . . . + an−1(226)n−1

⇒ A = a0|a1|a2| . . . |an−1

Petrick (SCS, UW) CS341 – Module Divide and Conquer Fall 2022 24 / 30

Karatsuba’s Algorithm (1960)

Implementation Concerns
1 Numbers of different lengths - sometimes large differences.

Example: A has n digits, B has m digits and n≫ m.
Break A into O(n/m) blocks of m digits, e.g.

A = 342|3794|3749|4379|4297|7294|9742× 3422 = B
Multiply each block by B
Sum all products (remember to do the shifts)
Analysis: O((n/m)mlog2 3) or O(nm0.585)

2 Which base to use? Base 10 nice for humans. In practice, for
computers, Base 264.
Store large numbers as an array of 64-bit integers (unsigned long):

A = a0 + a1(226) + a2(226)2 + . . . + an−1(226)n−1

⇒ A = a0|a1|a2| . . . |an−1

Petrick (SCS, UW) CS341 – Module Divide and Conquer Fall 2022 24 / 30

Multiplying Matrices

Problem
Matrix Multiplication
Instance: Two n by n matrices, A and B.
Question: Compute the n by n matrix product C = AB.

The naive algorithm (row by column for each of n2 locations) has
complexity Θ(n3).

Divide and Conquer: Divide into Submatrices of size n/2× n/2.

Petrick (SCS, UW) CS341 – Module Divide and Conquer Fall 2022 25 / 30

Matrix Multiplication - Simple Divide and Conquer

A =
[

a b
c d

]
, B =

[
e f
g h

]
, C = AB =

[
r s
t u

]

If A, B are n by n matrices, then a, b, ..., h, r , s, t, u are n
2 by n

2 matrices,
where

r = a e + b g s = a f + b h
t = c e + d g u = c f + d h

requiring 8 multiplications of n
2 by n

2 matrices to compute C = AB.

Analysis: T (n) = 8T (n/2) + O(n2)
Master Theorem: a = 8, b = 2, k = 2 compare a = 8 > bk = 4
T (n) ∈ Θ(nlogb a) = Θ(n3)

Petrick (SCS, UW) CS341 – Module Divide and Conquer Fall 2022 26 / 30

Strassen’s Algorithm (1969)
Idea: Similar to multiplication, algebraic genius (or trickery)!
⇒ 7 subproblems instead of 8 to compute C = AB!

Define

P1 = a(f − h) P2 = (a + b)h
P3 = (c + d)e P4 = d(g − e)
P5 = (a + d)(e + h) P6 = (b − d)(g + h)
P7 = (a − c)(e + f).

Then, compute

r = P5 + P4 − P2 + P6 s = P1 + P2
t = P3 + P4 u = P5 + P1 − P3 − P7

Analysis: T (n) = 7T (n/2) + O(n2)
Master Theorem: a = 7, b = 2, k = 2 compare a = 7 > bk = 4
T (n) ∈ Θ(nlogb a) = Θ(nlog2 7) ≈ Θ(n2.808)

Petrick (SCS, UW) CS341 – Module Divide and Conquer Fall 2022 27 / 30

Centrality of Matrix Multiplication
Suppose two n × n matrices can be multiplied in O(nω) where 2 ≤ ω ≤ 3.

Many other problems can also then be solved in O(nω):
Solving Ax = b
Determinant of A
Inverse of A, A−1

Many problems are at least as difficult as matrix multiplication.

Example: Reduction of triangular matrix inversion to matrix multiplication.
Compute the inverse of an n × n upper triangular matrix T .
Divide and Conquer: Decompose T into blocks of size n/2

Analysis: T (n) = 2T (n/2) + O(nω)
Master Theorem: a = 2, b = 2, k = ω and a = 2 < bk = 2ω ≥ 4
So, T (n) ∈ Θ(nω)

Also, Reduction of matrix multiplication to triangular matrix inversion.

Petrick (SCS, UW) CS341 – Module Divide and Conquer Fall 2022 28 / 30

Finding the Closest Pair

Problem
Closest Pair
Instance: A set of n distinct points in the plane.
Find: Two distinct points p, q such that the distance between p and q,

d(p, q) =
√

(px − qx)2 + (py − qy)2

is minimized.

Brute Force: try all pairs, O(n2)
Special case: 1D (points on a line): sort and compare consecutive pairs:
O(n log n)

Petrick (SCS, UW) CS341 – Module Divide and Conquer Fall 2022 29 / 30

Closest Pair - Divide and Conquer

Idea:
Divide points in half: left half Q, right half R, dividing line L
Recursively find closest pair in Q, R
Combine - must consider points with an endpoint on each side of L

Note: To divide points, it helps to sort by x-coord - once only!
Then extract the points you need in linear time (they will also be sorted).

Petrick (SCS, UW) CS341 – Module Divide and Conquer Fall 2022 30 / 30

Closest Pair - Divide and Conquer

Idea:
Divide points in half: left half Q, right half R, dividing line L
Recursively find closest pair in Q, R
Combine - must consider points with an endpoint on each side of L

Note: To divide points, it helps to sort by x-coord - once only!
Then extract the points you need in linear time (they will also be sorted).

Petrick (SCS, UW) CS341 – Module Divide and Conquer Fall 2022 30 / 30

	Module 3 Divide and Conquer
	Divide and Conquer Algorithm Basics
	Examples from previous courses
	Examples from previous courses - Sorting
	Examples from previous courses - Sorting
	Solving Recurrence Relations
	Recursion Tree for MergeSort
	Solving Mergesort
	Solving Recurrences by Substitution
	Careful! Watchout!
	Substitution - Changing the Guess
	Substituion - Changing Variables
	Example
	Example: Counting Inversions
	Example: Counting Inversions
	Example: Counting Inversions
	Example: Counting Inversions
	Common Recurrences
	Master Theorem
	Multiplying Large Numbers
	Multiplying Large Numbers
	Karatsuba's Algorithm (1960)
	Karatsuba's Algorithm (1960)
	Karatsuba's Algorithm (1960)
	Multiplying Matrices
	Matrix Multiplication - Simple Divide and Conquer
	Strassen's Algorithm (1969)
	Centrality of Matrix Multiplication
	Finding the Closest Pair
	Closest Pair - Divide and Conquer

