2024-09-25

LAST TIME: EXCHANGE ARGUMENT
FOR INTERVAL SELECTION

CS 341: ALGORITHMS ASSUMED: PROFIT / WEIGHT RATIOS
Lecture 7: finishing greedy ARE DISTINCT

WHAT IF THERE ARE MANY OPTIMAL SOLUTIONS

WHAT IF PROF|T/WE|GHT RATIOS « Can'tjust assume X I= Y and obtain a confradiction!
ARE NOT DISTINCT2 - Key idea: focus on one particular optimal solution

» Let Y be an optimal solution
that matches X on a maximal number of indices

OR, MORE GENERALLY, - Observe: if X is really optimal, then ¥ = X
WHAT IF THERE ARE MANY OPT SOLUTIONS? « Suppose X I= Y for contra

» We willmodify Y, preserving its optimality,
but making it match X on one more index (a contradiction!)

j = firstindex where the
solutions differ

1
fraction of YiEX fraction of
item in itemin G e | Must have
knapsack knapsack
Vi<x
0
o - 3 2

https://student.cs.uwaterloo.ca/~cs341
mailto:trevor.brown@uwaterloo.ca

1

fraction of

weight of X and ¥ must be the same Fraction we shol

add the same weight of item j in

With the goal of making the solutions
equal on index k or index j (% = 1), Wi — %)}
Observe § > 0

To show Y is feasible, we show weight(Y") < M and y; = 0,y; < 1

We move § weight from item k to item j
This does not change the total weight!
So weight(Y') = weight(Y) = M

P Ro F IT o F Y! (Fraction of item j added) x (profit for entire item)

profit(Y") = profit(Y) + %p
st

pPr = profit(Y) + 6 (ﬂ = &>

Wi wg

Wi
Since j is before k, and we consider items with more profit per

2 2 2 e
unit weight first, we have ::_' f_k
/i 'k

Since & > 0 and %’2 2, we have § (£
e

Since Y is optimal, this cannot be positive

So Y’ is a new optimal solution
that matches X on one more index than Y

Contradiction: ¥ matched X on a maximal number of indices!

n

knapsack

o}
frol Weight to
Remove some weight § of item k and make solutions a remove:

2024-09-25

SUpPOse 6 = Wiy — i)

0

In this case, since & = wy(y — xi).
we end up with y; = x;

If & were w;(x; — ;). we would have y; = x;

FEASIBILITY OF Y’
« Showing y;, =0

« By definition, Vi — % > 0iff6 < ypwy

43

« But § is the minimum of w ;) and wy (v — xx)

* And wy (Yk — xx) < WiVk SO 8 < YWy
+ Showing y; < 1

+ % <1iffs <w;(1-y;) ((Eeligelatellale)]
(definition of &)

 and w;(x; — y;) < w;(1—y)) (by feasibility of X, i.e., xj < 1)

10

SUMMARIZING EXCHANGE ARGUMENTS

« If there is a unique optimal solution
- Let O I= G be an optimal solution that beats greedy
« Show how to change O to obtain a better solution
« If there is more than one optimal solution

« Let O I= G be an optimal solution that matches greedy
on as many choices as possible

» Show how to change O to obtain an optimal solution
O' that matches greedy for even more choice(s)

FINISHING UP GREEDY

PROBLEM: INTERVAL COLOURING
Instance: Aset A= {A;,...,A,} of intervals.
For1 <i<n, A; = [s;, fi), where s; is the start time of interval A; and

fi is the finish time of A;.

Feasible solution: A c-colouring is a mapping col : A — {1,....c}

that assigns each interval a colour such that two intervals receiving the

same colour are always disjoint.

Find: A c-colouring of A with t
7 intervals,
7 colours.

Feasible, but

Example
L] Il

Greedy Strategies for Interval Colouring

intervals

sible colour. If it
using an urs, then we introduce
a new colour dis

Question: In what order should

2024-09-25

INTERVAL COLOURING

MORE EXAMPLES

Example

Example

Example

EXAMPLE:
ORDER

but not disjoint...

L 1
L 1 L]

Not feasible!

7 intervals,
6 colours.
Feasible, but
not opfimal
but disjoint. OK! P
7intervals,
2 colours.
Opfimal

ble colour. If it
e introduce

MATTERS!

Considerintervals in
the order they are
givenin the input:

A, .. Ay

2024-09-25

>

>»

EXAMPLE:
ORDER
MATTERS!

EXAMPLE:
ORDER
MATTERS!

rrrrrr>

EXAMPLE: a EXAMPLE:
ORDER

ORDER
MATTERS! & MATTERS!

EXAMPLE: & EXAMPLE:
ORDER

ORDER & A
EEEN - L]
wies B EENEEEEEE

I , -
M A ENEEENENEN
L] EEEEEEEREEEEEENE
2 G B OBl 2eeal A] G 8 0

6 8 10 12 14 16 18

2024-09-25

>

>»

EXAMPLE:
ORDER
MATTERS!

EXAMPLE:
ORDER
MATTERS!

rrrrrr>

EXAMPLE: a EXAMPLE:
ORDER

MATTERS!

ORDER
; MATTERS!

A
Av
Used 4 colours s | |
.

Can we do better? 0 2 6 8 10

EXAMPLE: EXAMPLE:
ORDER & mm

ORDER *
y || | A,
MATTERS !

MATTERS!
A | | [[[L]]
. Ay N A,
Pre-sortinte ls by Pre-sortinte ls by
increasing startfime! IRESS EEEEEEEEEEEEREEN increasing startime! R IS
DR T Y T U S UMY T WURMEY W WU WPy
" 5 ; 5 IS e crss

0 2 4 6 8 10 12 14 16

6 8 10 12 14 16 18

EXAMPLE:
ORDER
MATTERS!

EXAMPLE:
ORDER

MATTERS!

EXAMPLE:
ORDER
MATTERS!

A,
~ HINNEEEEEEEEN

Ay

4 INENEEEEEEEEEEEN

0 2 4 6 8 10 12 14 16

EXAMPLE:
ORDER
MATTERS!

EXAMPLE:
ORDER
MATTERS!

EXAMPLE:
ORDER
MATTERS!

2024-09-25

)
As L] ||
; -

A, L]

» INNEEEEEEEEN
Ay

- INNEEEEEEEEEEEEN

0 2 4 6 8 10 12 14 16

L]
A,

As [|

Aq

As [
AA

A,
L]

As

» INEEEEEEEEEEENEN

0 2 4 6 8 10 12 14 16

EXAMPLE:
ORDER
MATTERS!

EXAMPLE:
ORDER
MATTERS!

Preprocess(A[)
d = # of colours B sort A by increasing
usedsofar | X J:be t:

GreedyIntervalColouring(s
d =
colour [Interval 1 gets colour 1
f

finish(
For each interval 4;,
: search for an appropriate colour ¢
false
Check if we canreuse 7 s
any colourcin 1..d if finish(c [Cor?s\.der interval 4; = (s;, f)-
- c Ifs; = finish[c], then we can give 4;

colour (i
finishic colour ¢ without breaking feasibility

bre
if not reused then
de+ we reused a colour

colour[i
finish{d] =
If we didn’t reuse a colour,

return d
use a new colour

EXAMPLE:
ORDER
MATTERS!

EXAMPLE:
ORDER
MATTERS!

Used 3 colours

Initial state

EXAMPLE:
NUNININ(€
GREEDY

2024-09-25

EXAMPLE:

RUNNING

GREEDY

While loop overc.
Checkif we ¢
reuse a color

EXAMPLE:

d

RUNNING

finish[2]=

Is finish[1] < 5,2
No. We cannot
reuse colour 1.

Cannoft reuse any

colour. Create a
new one!

GREEDY

While loop over
Check if we can
reuse a colorin 1..d

EXAMPLE:

RUNNING

2024-09-25

Is finish[1] < 5,2
No. We cannot
reuse colour 1.

Cannof reuse any

colour. Create a
new one!

GREEDY

While loop overe.
Check if we c
reuse a color d

EXAMPLE:
RUNNING
GREEDY

finish[2

=

Is finish[1] < 5,2

No. We cannot
reuse colour 1.

Is finish[2] < 552

No. We cannot

reuse colour 2.

Cannot reuse any
colour. Create
new one.

Is finish[1] < 5,2

Is finish[1] < 552

finishi31= o, we cannot i=4 d=3 finish[1]= finish[2]= finish[3]= T —
G lour 1.
While loop overc. [, COlT, While loop overc. A \ ot reuse colour 1.
Checkif we c: Is finish[2] < 552 Checkif we can A T

reuse a colorin 1..d reuse a colorin 1..d

No. We cannot A, B
EXAMPLE: reuse colour 2. ANAD

% Cannot reuse any
RUNNING colour. Create »)
new one.
R D

GREEDY * |

2024-09-25

Is finish{1] < 5,2 Is finish[1] < 552
i=4 a=3 finish(l= § finishi2l= | finish[3]= T i=5 a=3 finish(1]= [finishi2)= | finish[3]= e
While loop overc. -) - revse colour I, While loop overec. A N - reuse colour 1.
Checkif we can Checkif we can - Is finish[2] < 552
reuse a colorin 1.d G T | reuse a colorin 1..d ‘ >
A, K Y A, K N No. We cannot
A ») A ») reuse colour 2.
2 A 2 A D s finish(3] < 52
. A, Yes. We can
~ A . \ reuse colour 3.
))
0
Correctness of the Algorithm
Is finish[1] < 552
finish(2]= § finish[3]=

No. We cannot
— reuse colour 1.
Checkif we can . Is finish[2] < 552
reuse a color in

h n be proven induc!
A i No. We cannot 2 sick me
EXAMPLE: |

" proof
reuse colour 2.

1 Is finish[3] < 552
RUNNING % o=
: lour 3.
GREEDY E And soon, reuse colour
and so forth...

20
x-axis

51

Let Fp be the first interval that has colour D

I Let Fp be the first interval that has colour D

We prove F, overlaps D-1 other intervals at a single point in fime

2024-09-25

Let Fp be the first interval that has colour D Preproce:

RESTCET: NN AP ;
Let L, be the last interval that has colour ¢ and starts before Fj, Note L; must exist - te ‘the st in » M TIME COMPLEXITY?

We prove start{F,] is properly contained in every such interval L,

Total O(nlog n + nd)

. i 7 GreedyIntervalColouring(s
and Aniskil] TLetos d 8 d Could be 0(nlog n) if only a constant
S number of colours are needed
B — (or even logn colours!)
3 3 sor ¥ o(n) iterations
4 i ! s 0(d) iterations. Could be 0(n?) if 1 ded
Same argument applies to for ¢ ould be 0(n?) if n colours are neede:
if finish(c s[i] then
6 colour(i] = ¢
ps D erva 17 f f14 : .
araEnale s 18 Most accurate complexity statement is
1 X O(nlogn +nD) where D is # colours used
] if not reu:
D-1 e 21 d
‘ ‘ ‘ ‘ ‘ colour[i What inefficiencies exist in this algorithm?
D) finish(d] =

Could we make it faster with clever data
return d . © <

IMPROVING THIS ALGORITHM EXAMPLE:

. : L HEAP-BASED . EEEE
+ Current greedy algorithm:
ALGORITHM
+ For each interval 4;, compare ifs start fime s; with the
finish[c] times of all colours infroduced so-far
* Why? Looking for some finish[c] time that is earlier than s; Heap
» We are doing linear search... Can we do better?

« Use a priority queue to keep track of the earliest finish|c]
at all times in the algorithm

» Then we only need to look at minimum elem

HEAP-BASED HEAP-BASED
ALGORITHM 2 ALGORITHM

Heap

S = oL =
A | L Ay [| [

Heap finish at
time 3

10

EXAMPLE:

HEAP-BASED
ALGORITHM

Check heap
minimum

Check if finish time
3is before s,

No. New colour!

Heap finish at

fime 3

EXAMPLE:

HEAP-BASED
ALGORITHM

Check heap
minimum

Check if finish fime
3is before s3

No. New colour!

Heap (finish at
fime 3
finish at
time 7

A P Iteration i=4
AP-BASED
A OR
3

Check heap
minimum

Check if finish fime
3is before s,

Yes. Reuse colour,
deleteMin and
insert new finish

time into heap!

finish at
Min element

finish at
e time 5

2024-09-25

A P o iz Checkheap @ Check if finish time
Iteration i=2 oo 3is before s, No. New colour!
P_R
A BA . - 2R00000000000cc00ce0
a @)

finish at
Min elemenr

EXAMPLE: e

HEAP-BASED . ——
ALGORITHM

Min element; ' &
in element time 3

Heap (finjsh at
time 3

finish at ish at
time 7 fime 5

No. New colour!

Check heap
minimum

Check f finish time
3is before s,

Yes. Reuse colour,
deleteMin and
insert new finish

A, fime into heap!

EXAMPLE:

HEAP-BASED ——

ALGORITHM

finish at
time 7

11

EXAMPLE:
HEAP-BASED
ALGORITHM

finish at * Hfinish af
time 7 time 9

EXAMPLE:
HEAP-BASED
ALGORITHM

Heap finish ot
time 7

[l | finish af
WCHKE | fime 9

Check if finish time [Yes. Reuse colour,
3is before s, deleteMin and

insert new finish

time into heap!

As

~ IHENNEEEEEEEEEEN

Check if finish fime [Yes. Reuse colour,
5 is before sg deleteMin and

insert new finish

time into heap!

And so on,
and so forth...

DYNAMIC PROGRAMMING

What?

2024-09-25

Checkif finish time [Yes. Reuse colour,
5is before ss deleteMin and

insert new finish

fime into heap!

EXAMPLE:
HEAP-BASED
ALGORITHM

|
A
» INNEEEEEEEER
Ay
~ INNEEEEEEEE NN

finish at * Hfinish af
time 7 time 9

e start time:
e finish tim
rvalColouring(

0(log S) where

1.colour(111) S = size(priority queue)

h.min()
<= s[i] then
colour[i] 0(log D)
o

Total @(nlogn) + 6(nlog D)

Since n = D, @(nlogn)

. colour(ill) 0(log D)

return d

Richard Bellman, Eye of the Hurricane: An Autobiography

“Bottom-up recursion”
(1984, excerpts from page 15!

might also a reasonable

_ name, as we'll see...
Where did the name, dynamic programming, come from? The
1

not good years for mathematical research:

entleman in Washington
ary of Defense, and he actually
cal fear and hatred of the word "research”... He
and he would get violent if people used the term
research in his pr i can imagine how he felt, then,
about the term mathematical.

It I had to do something to shield Wilson ... from the
doing mathematics... What title, what name,

s s interested in planning
making, in thinking. But planning, is not a g rd for
reasons. | decided therefore to use the word "programming.” |
wanted to get namic,” this

Kkill two bir

12

2024-09-25

COMPUTING FIBONACCI NUMBERS INEFFICIENTLY UNTIME

A TOY EXAMPLE TO COMPARE D&C TO DYNAMIC PROGRAMMING

In unit cost model BadFib(n)

1
1 BadFib(n) 2 if n == 0 or n == 1 then return n
2 if n == 0 or n == 1 then return n _ * (UNREALISTIC!) 3 return BadFib(n-1) + BadFib(n-2)
3

return BadFib(n- + BadFib(n-2) SO , 5 3
Tn) =T(n—1)+Tn—2)+0(1) This O(1) would change in the bit
r s B i complexity model
SRS . vy o i
- o B 5 b B -
B e 1 « T(n) <2T(n—1) + 0(1)
n/2 levels of recursion for the first expression

e

[N, 3 n levels for the second expression

Work doubles at each level

] i 2y e
FIB“"“BGI]"GE““S T(n) is certainly in 2(2™%) and 0(2"™)

2 Designing Dynamic Programming Algorithms for
WHY IS THIS SO SLOWE Optimization Problems

The Recursion Tree to Evaluate
Subproblems have

LOTS of overlap! (Optimal) Recursive Structure
: E

Ever\/ subtree on an optimal
the right appears 3 f optimal seluti
on the left subproblems of /

... recursively ... Define Subproblems
nstance I, the

Each subtree is . ima of I to be
computed >

exponentially H
often in its depth
This overlap suggests dynamic
programming may be able to help!

Designing Dynamic Programming Algorithms (cont.) SOLVING FIB USING DYNAMIC PROGRAMMING
« (Optimal) Recursive Structure

« Solution to n-th Fibonacci number f(n) can be expressed
as the addition of smaller Fibonacci numbers

Recurrence Relation

« No notion of optimality for this particular problem
Compute O « Define Subproblems
« The set subproblems that will be combined to obtain Fib(n)
is {Fib(n — 1), Fib(n — 2)}

containing « S(I) = {Fib(0), Fib(1), ..., Fib(n)}

ar table entry i

« Recurrence Relation fa—1D+f(n-2):i
fm =141

0
» Computing (Optimal) Solutions
« Create table f[1..n] and compute its entries “bottom-up”

13

2024-09-25

FILLING THE TABLE “BOTTOM-UP" DP SOLUTION i Fiooe(n)

represents f[i-2]

. 1 FibDP(n) fi1 = represents f[i-1]
« Keyidea: : = O GO 6 LD PR save] before
+ When computing a table enfry ; f10] temp = fi overwrifingit (so
s | A its value can be
» Must have already computed o fi = fi1 + fi2 | storedinffi-1]
the entries it depends on!) for i = 9) later)
- ‘ G = i) ¢ e 0 fi2 = fi1
« Dependencies : : n il = temp
> . 10 return f[n] .
+ Exiract directly from recurrence - 7 ¥ 13 return fi
« Entry n depends on n-1 and n-2 ’ : + Space saving opfimization:

- Computing entries in order 1..n i =) X « We never look at f[i-3] or earlier
guarantees n-1 and n-2 are already
computed when we compute n

Contains f[n]

+ Can make do with a few This s still considered to be
variables instead of a table dynamic programming...
We've just optimized out the table.

80

CORRECTNESS MODEL OF COMPUTATION FOR RUNTIME

Order 0 i-1 and i-2 are alread 3 ; i :
« Step 1 cér:;r»u ndn\;‘vehoe:vs\:ve?:r;m‘puct’:mec ’ « Unit cost model is not very realistic for this problem,

- Prove that when computing a table entry, because Fibonacci numbers grow quickly
dependent entries are already computed » F[10]=55
R f[i-1] and f[i-2] are th 3 2
« Step 2 (similar to D&C) (il-le]?v?Ls;dl(i-Z;]tg Fibl#s aethe F[100]=354224848179261915075
- Suppose subproblems are Then prove f[i] = the n-th Fib # F[300] 55 4619099672066669390964997 64990979600
solved correctly (optimally) |1 FlhDF['-n':) Value of F[n] is exponentialin n: f, € 0(¢™) where ¢ = 1.6
2 new array of size n
» Prove these (optimal) ¢™ needs log(¢p™) bits to store it

subsolutions are combined qen 2 But let’s use unit cost
s 5 ' foil = So F[n] needs 0(n) bits to store! anyway for simplicity
into a(n optimal) solution P

fri1 = fri

return f[n]

RUNNING TIME (UNIT COST) A BRIEF ASIDE
Express T(n) as a function

.« T(n) € O(n) < 70 £ BOn) « Is this linear runtime?2 of the Input size § (in bits)

« NO! This is “a linear function of n” Py
£ 5 S loane
- When we say “linear runtime” we mean SZ:T(,f{’: o
“a linear function of the input size”
; : : This algorithm s
» What is the input size §2 in the input size!

» The input is the number n. .. but sfill exponentially
> = faster than 2™
« How many bits does it take to store n2

0(logn)
» So S = logn bits

14

UNLIKELY THAT WE GET HERE

DYNAMIC PROGRAMMING APPROACH

« High levelidea (can just think recursively to start)
» Given arod of length n

« Either make no cufs,
or make a cut and recurse on the remaining parts

| Income p,,

Income(Left) + Income(Right)

* Where should we cut?

Critical step! Must define what M(k)
means, semantically!

RECURRENCE RELATION
« Define M(k) = maximum income for rod of length k
« If we do not cut the rod, maxincome is py,
« Ifwedo cutarodati
| 2
Length i Length k — i
« maxincomeis M(i) + M(k — i)
« Want to maximize this over all i
o max {M(i) + M(k — i)} (for0<i<k)

* M(k) = max{pk, maxq<<x_1 M) + M(k — i)}}

2024-09-25

ROD CUTIING

A “REAL" DYNAMIC PROGRAMMING EXAMPLE

* Input: n=t
« n: length of rod 53
* py, .., Dni p; = price of arod of length i
» Output:
» Max income possible by cutting the rod of length n
into any number of integer pieces (maybe no cuts)

All ways of cutting !

arodoflength 4 [RIML) OeID

5

Example output: 10 &‘ S'r\ ﬁ 0;0—\ ﬁ ro‘—\ 0% TO'—

DYNAMIC PROGRAMMING APPROACH

« Try all ways of making that cut
« l.e., try a cut at positions 1,2, ...,n — 1
« In each case, recurse on two rods [0,i] and [i,n]
» Take the max income over all possibilities (each i / no cut)

Optimal substructure:
Max income from two
rods w/sizes i andn — i

... Is max income we can
get from the rod size i

+max income we can
get from the rod size n — i

88

COMPUTING SOLUTIONS BOTTOM-UP

* Recurrence: M(k) = max{p,, maxy<;,_1{M(D) + M(k —)}

« Compute table of solutions: M[1..n]
v NN Ll]
1

n

» Dependencies: depends on
o M[i] > M[1..(k—1)]
o Mlk—i] > M[1..(k—1)]
 All of these dependencies are < k
« So we can fillin the table entries in order 1..n

15

2024-09-25

Recall, semantically, naximum income for rod of length k

Recurrence: M(k) = max{p;, maxyioi_1(M(i) + M(k — D)}} MISCELLANEOUS TIPS
RodCutting(pl

T S « Building a table of results bottom-up
is what makes an algorithm DP

« There is a similar concept called memoization

« But, for the purposes of this course,
we want to see bottom-up table filling!

return M[n] » Base cases are critical
Time complexity
(unit cost)? o(n?)

« They often completely
determine the answer

« Try setting f[0]=f[1]=0in FibDP...

Aside: Is this a “quadratic time” algorithm?

Exercise: devise an even simpler DP solution
(hint: try “recursing” only once)

16

