2024-09-25

LAST TIME: EXCHANGE ARGUMENT
FOR INTERVAL SELECTION

CS 341: ALGORITHMS ASSUMED: PROFIT / WEIGHT RATIOS
Lecture 7: finishing greedy ARE DISTINCT

Readings: see website

Trevor Brown

https://student.cs.uwaterloo.ca/~cs341

trevor.brown@uwaterloo.ca

WHAT IF THERE ARE MANY OPTIMAL SOLUTIONS

WHAT IF PROF|T/WE|GHT RATIOS Can't just assume X =Y and obtain a contradiction!
ARE NOT DISTINCT?2 Key idea: focus on one particular optimal solution

Let Y be an optimal solution
that matches X on a maximal number of indices

OR, MORE GENERALLY, Observe: if X is really optimal, then ¥ = X
WHAT IF THERE ARE MANY OPT SOLUTIONS? Suppose X I=Y for contra

We will modify Y, preserving its optimality,
but making it match X on one more index (a contradiction!)

j = firstindex where the

Greedy solutions differ Optimal Greedy Optimal
solution X solution Y solution X solution Y
1 1 1 1 e
fraction of fraction of .
itemin Y[|Y2) A itemin V| V2| (R
knapsack knapsack et
O=—Tr—TTTT T T [e S A I N N [s s s s s s s B e [s S R)
- z c -~ z c = z c -~ z c
5§ 8 5 §5 5 5 55 5 i 55 5 5

https://student.cs.uwaterloo.ca/~cs341
mailto:trevor.brown@uwaterloo.ca

Optimal || Fraction we should add |
Greedy solzﬂon y | fojtomake solutions
solution X S iequalonindexj

9 Weight fo ad

fraction of Wi~)
itemin
knapsack m e
0 i
£ E Ot ¢ £
5§ g 5 b 508
Must exist k > j such that y, > x, because hould
weight of X and Y must be the same we shou N
remove from k to Weight to
Remove some weight & of item k and make solutions equal remove:
add the same weight of item onindexk: y; — xx wi(Yi — Xi)

With the goal of making the solutions

equal on index k or index j Let & = min{w;(x; - y), k(i — %)}

Observe § > 0

1

solution Y' Ival lva| ee i a
UL e
L L L

To show Y' is feasible, we show weight(Y') <M and yj 2 0,y; < 1

We move § weight from item k to item j
Weight This does not change the total weight!
Soweight(Y'") = weight(Y) = M

PROFIT OF Yl ‘ (Fraction of item j added) x (profit for entire item) ‘
ity = i LI A i P _ P
profit(Y") = profit(Y) + wjpj we P profit(Y) + 6 (w,_ Wk)
Since j is before k, and we consider items with more profit per
unit weight first, we have 2L > Pk,
w; = wy
Since6>Oondﬂzﬂ,wehoveé(ﬂ—ﬂ)20
wj T wg Wi Wk

Since Y is optimal, this cannot be positive

So Y'is a new optimal solution
that matches X on one more index than Y

Contradiction: ¥ matched X on a maximal number of indices!

n

2024-09-25

Optimal
Greedy solution Y
solution X

Suppose & = wy(yx — xx)

1

1]
fraction of

itemin
knapsack

0

b
3
£
g

Modified optimal
solution Y*

lfemn

Item 1
Item 2
Itemj

14

In this case, since & = wi(yy — xi).
we end up with yj = x

[115 were w3 ~3,). we would have yj = ‘ .

FEASIBILITY OF Y’

Showing y; =0
By definifion, y, = yj — wik > 0iffd < ywy
But & is the minimum of w;(x; — y;) and w (yx — xx)
And wy (Y — X)) < Wiy 80 8 < YWy
Showingyj <1
yj =y +wij <1ifs<wj(1-y)) (rearranging)

8 < wy(x;— ;) (definition of &)
and w;(x; ;) < w;(1-y)) (by feasibility of X, i.e., x; < 1)

10

SUMMARIZING EXCHANGE ARGUMENTS

If there is a unique optimal solution
Let O = G be an optimal solution that beats greedy
Show how to change O to obtain a better solution

If there is more than one optimal solution
Let O = G be an optimal solution that matches greedy
on as many choices as possible

Show how to change O to obtain an optimal solution
O’ that matches greedy for even more choice(s)

FINISHING UP GREEDY

PROBLEM: INTERVAL COLOURING

: Aset A= {Ay,...,A,} of intervals.
<n, A, = s, fi), where s, is the start time of interval A; and

fi is the finish time of A;

Feasible solution: A c-colouring is a mapping col : A — {1,..., c}

that assigns each interval a colour such that two intervals receiving the

same colour are always disjoint

Find: A c-colouring of A with the miminum mumber or colours.

 ———————

‘ 7 intervals,

7 colours.

s I I I —
not optimal

Example

2024-09-25

INTERVAL COLOURING

MORE EXAMPLES W‘
[

Example Not feasible!

1 — 1]

‘ 7 intervals,
6 colours.
Example J J \— Feasible, but
Same color, not optimal
but disjoint. OK!

Greedy Strategies for Interval Colouring

As usual, we consider the intervals one at a time.

At a given point in time, suppose we have coloured the first i < n intervals
using d colours.

We will colour the (i + 1)st interval with any permissible colour. If it
cannot be coloured using any of the existing d colours, then we introduce
a new colour and d is increased by 1.

Question: In what order should we consider the intervals?

1
‘ J ‘ 7 intervals,

Example 2 colours.

C———1 OO 7| ‘o

We will colour the (i + 1)st interval with any permissible colour. If it
cannot be coloured using any of the existing d colours, then we introduce
a new colour and d is increased by 1.

EXAMPLE:
ORDER
MATTERS!

Considerintervalsin
the order they are
givenin the input:

Ay . Ay

2024-09-25

A A
» HNNEEEEN ANEEEEEEEE » INNENEEN INEEEEEEEN
3 A,

EXAMPLE: ¥ EEEEEEEEEEEE EXAMPLE: M | | EEEEEEEEEEEE
ORDER . ORDER o~
MATTERS! MATTERS!
EEEEEEEE BEEEEEEEEE EEEEEEEEEE
EXAMPLE: ¥ EEEEEEEEEEEE EXAMPLE: ¥ EEEEEEEEEEEE
ORDER ORDER 2»
MATTERS! MATTERS! &2
EEEEEEEE BEEEEEEEEEE EEEEEEEE EEEEEEEEEE
EXAMPLE: 22 EEEEEEEEEEEE EXAMPLE: :i || EEEEEEEEEEEE
ORDER A ORDER A OEEEEEE
MATTERS! B MATTERS! [

T
EXAMPLE: ¥ EEEEEEEEEEEE
ORDER OEEEEEE
MATTERS!

EEEEEEEE BEEEEEEEEE
EXAMPLE: ¥ EEEEEEEEEEEE
ORDER OEEEEEE
MATTERS!

EEEEEEEE BEEEEEEEEE
EXAMPLE: ¥ EEEEEEEEEEEE
ORDER
MATTERS!

Pre-sortintervals by
increasing start time!

EXAMPLE:
ORDER
MATTERS!

EXAMPLE:
ORDER
MATTERS!

2024-09-25

A,
» INEEEEER
AJ

A, NN

As

INEEEEEEEN
ENEEEEEEEEEE
L L]

7
g 4

INEEEEEEEE
ENEEEEEEEEEE
BENEEEEN

EXAMPLE:
ORDER
MATTERS!

Pre-sortintervals by
increasing start time!

s

rrrre2rr2r2r>

x-axis

2024-09-25

:L EEEEEEEEEEEEEE :L IEEEEEEEEEEREE
EXAMPLE: ¥ EEEEEEEEEEEE EXAMPLE: M | EEEEEEEEEEEE
ORDER [ORDER 5
MATTERS! [MATTERS! [

EEEEEEEEEEEEEE IEEEEEEEEEEREE
EXAMPLE: ¥ EEEEEEEEEEEE EXAMPLE: ¥ EEEEEEEEEEEE
ORDER [ORDER 5
MATTERS! & MATTERS! 8

- EEEEEEEEEEEEEE . IEEEEEEEEEEREE
EXAMPLE: ¥ EXAMPLE: PM EEEEEEEEEEEE
ORDER ¥ ORDER & [[[][]

MATTERS! [MATTERS!

x-axis

2024-09-25

EXAMPLE:
ORDER
MATTERS!

EXAMPLE:
ORDER
MATTERS!

EXAMPLE:
ORDER
MATTERS!

EXAMPLE:
ORDER
MATTERS!

Used 3 colours

N
T
Turns out to be opfimal... 20 N
x-axis

,\,__
IS
P N
®
5]
S
=
EN
3

“Preprocess(A[1..n]) o e 4
sort A by increasing start time finish[c] = finishtime of last
used so far let s[1..n] be the start times in A i i .
e Tl nTbe ke finteh e ATk interval to receive colour ¢ Initial state
return GreedyIntervalColouring(s, f)
GreedyIntervalColouring(s['..n], f{1..n])
det
colour[1] = 14 Interval 1 gets colour 1

finish(1] = f[1]
Foreachinterval A,

i _ EXAMPLE:
oF io;s:d: Talse search for an appropriate colour ¢
et crane AR o RUNNING
any colourein 1.d if finishic] <= s[i] then onsider inferval 4; = (s;, f)-
lour[i] = ¢ If s; > finish[c], then we can give 4; GREEDY

colour[i] =
finishic] = f[i] colour ¢ without breaking feasibility
reused = true

break =
if not reused then
d++ we reused a colour

colour[i] = d
finish[d] = f[i]

return d

If we didn't reuse a colour,

use a new colour

EXAMPLE:
RUNNING
GREEDY

Is finish[1] < 5,2

| fnisniz= No. We cannof
reuse colour 1.

Lﬁnishn 1=

reuse a color

EXAMPLE
RUNNING
GREEDY

Is finish[1] < 5,2

finish31= 5. we cannot

i=3 [a=s uinish[1]= | finisni21=

reuse colour 1.

Is fzmsh[Z] <s;2

‘e cannot

reuse a color
Cannot reuse any

EXAMPLE
RUNNING <olour. Create
GREEDY

2024-09-25

Is finish[1] < 5,2

No. We cannot
reuse colour 1.

4=2 Lﬂnish[T]:

Checkif we can
reuse a colorin 1..d

EXAMPLE:
RUNNING
GREEDY

Is finish[1] < 5,2

Lf'\nLShm: No. We cannot
reuse colour 1.

[o= [

No. We cannot

Lﬁnish[l]=

reuse a color
Cannot reuse any

EXAMP LE
RUNNIN G " co:?eu\; g;este
GREEDY

Is finish[1] < 5,2

[= | e Lﬁnish[1]= | finsh(2l= | finish{3]= P T—

reuse colour 1.

reuse a color

EXAMPLE
RUNNING
GREEDY

| L finishi1 1:J Lﬂ'm’sh[Z]:

While loop overe.
Checkif we can
reuse a colorin 1..d

EXAMPLE:
RUNNING
GREEDY

2024-09-25

Is finish[1] < 5,2 Is finish[1] < 552

2= finish(3]=

No. We cannot
reuse colour 1.

Is finish[2] < 5,2
No. We cannot

EXAMPLE: reuse colour 2.

Is finish[3] < 52

RUNN'NG Yes. We can
GREEDY reuse colour 3.

Yes. We can
reuse colour 1.

reuse a colorin 1..d

EXAMPLE:
RUNNING
GREEDY

Let Fp be the first interval that has colour D

x-axis
4 50
— Correctness of the Algorithm
Is finish[1] < 552
No. We cannot
reuse colour 1.
Is finish[2] < 5,2 The correctness of this greedy algorithm can be proven inductively as well
No. We cannot as by a “slick” method—we give the “slick” proof:
reuse colour 2. Let) denote the number of colours used by the algorithm
Is finish[3] < 552
Yes. We can
reuse colour 3.
x-axis
5 52
Let Fp be the first interval that has colour D
We prove F, overlaps D-1 other intervals at a single point in time
54

‘ Let Fp be the first interval that has colour D ‘ Let's argue this for Ly

‘ Let L. be the last interval that has colour ¢ and starts before Fj, \
We prove start[Fp] is properly contained in every such interval L.

Note L, must exist
(otherwise greedy would
just use colour 1 for Fp)

And finish[L,] must be after
start[Fp] or colour 1 would
be eligible for reuse!

So, Fp overlaps D — 1 intervals
at a single fime start[Fp]!

IMPROVING THIS ALGORITHM

Current greedy algorithm:

For each interval 4;, compare its start time s; with the
finish[c] times of all colours infroduced so-far

Why? Looking for some finish[c] time that is earlier than s;
We are doing linear search... Can we do better?

Use a priority queue to keep track of the earliest finish[c]
at all times in the algorithm

Then we only need to look at minimum element

Empty, so a new
colouris needed

Check heap
minimum

EXAMPLE:
HEAP-BASED
ALGORITHM

Min element: NULL

Iterationi=1 |

Heap

Preprocess(AL. .0}

2024-09-25

sort A by m:rZasmg start time TIME COMPLEXITY?

1

2

3 let s[1..n] be the start times in

4 let f{1..n] be the finish times in A

5 return GreedyIntervalColouring(s,)

6

3 GreedyIntervalColouring(s(i..n], f(1..n])
8 d=1

9 colour[1] = 1

10 finish[1] = f[1]

B oo 0w iterations

Rk = f;

B foused = false _ ["o(a) iterations...
15 if finishlc] <= s[i] then

16 colour[i] = ¢

7 finish(c] = f[i]

1® reused - true

1! break

2
n
2
=
24
=

if not reused then
s

colour[i] = d
finish{d] = f[i]

return d

EXAMPLE:
HEAP-BASED
ALGORITHM

Min element: NULL

| nitia state

Heap

Total O(nlog n + nd)

Could be 0(nlog n) if only a constant
number of colours are needed
(or even logn colours!)

Could be 0(n?) if n colours are needed

Most accurate complexity statement is
O(nlogn + nD) where D is # colours used

What inefficiencies exist in this algorithm?2
Could we make it faster with clever data
structure usage?

EXAMPLE:

‘ Iterationi=1 ‘

Check heap

Empty, so a new

minimum colouris needed

HEAP-BASED
ALGORITHM

finish at
time 3

Min element

10

EXAMPLE:
HEAP-BASED
ALGORITHM

inish at

| i
Min elemen',l fime 3

EXAMPLE:
HEAP-BASED
ALGORITHM

inish at
fime 3

3

Min elemem:l f

EXAMPLE:
HEAP-BASED
ALGORITHM

Check heap

e . New 1
minimum No. New colour

Iteration i=2 |

Check if finish time
3is before s,

Check heap

ion i=: S . 1
| Iterationi=3 | minimum No. New colour!

Check f finish fime
3is before s;

Check if finish fime

Yes. Reuse colour,
3is before s,

deleteMin and
insert new finish
time into heap!

Check heap

Iteration i=4 -
| erafiont minimum

finish at
fime 3

Min element

Heap

2024-09-25

Check heap
minimum

EXAMPLE:
HEAP-BASED
ALGORITHM

Min elementl finish at

No. New colour!

Check if finish time
3is before s,

‘ Iteration i=2 ‘

time 3

Check heap
minimum

EXAMPLE:
HEAP-BASED
ALGORITHM

No. New colour!

‘ terationi=3 ‘ | Check f finish fime

3is before s

finish at

Min element] " -~ 5

EXAMPLE:
HEAP-BASED
ALGORITHM

Check heap || Checkif finish time | | Yes. Reuse colour,
minimum 3is before s, deleteMin and

insert new finish

time into heap!

‘ Iteration i=4 ‘

finish at
time 5

Min element

11

EXAMPLE:
HEAP-BASED
ALGORITHM

Check if finish time

Check heap
3is before s,

minimum

Iterationi=4 |

finish af

Min element: "\, ¢

Heap

EXAMPLE:
HEAP-BASED
ALGORITHM

Yes. Reuse colour,
deleteMin and
insert new finish
time into heap!

Check heap

Iterationi=5 | minimum

5is before sg

finish af
fime 7

Min element

Heap

‘ Check if finish fime | | Yes. Reuse colour,
deleteMin and
insert new finish

time into heap!

DYNAMIC PROGRAMMING

What?

x-axis

Check heap
minimum

EXAMPLE:

‘ Iteration i=5 ‘

Check if finish time
5is before s5

2024-09-25

Yes. Reuse colour,
deleteMin and
insert new finish

HEAP-BASED
ALGORITHM

inish at
time 5

Min elementl f

Heap

time into heap!

1 Preprocess(A[1..n])

2 sort A by increasing start time

3 let s[1..n] be the start times in A

4 let f[1..n] be the finish times in A

5 return GreedyIntervalColouring(s, f)

6

7 GreedyIntervalColouring(s['..n], f[1..n])

8 d=1

': ;elour[1 ‘=Pl‘1 0(log S) where
= new min e i

1t h.insert([f[1],colour(1]]) $ = size(priority queve)

12

13 for i = 2.0

14 (fc, c) = n.mxn()

15 if fc <= s[i] then

16 h.deleteMin()

7 colour(i] = ¢ 0(log D)

18 else

19 d++

colour(i] = d

Total @(nlogn) + 6(nlog D)

Since n = D, ©(nlogn)

20
21 h.insert({f[i], colour(il])
o — 0(ogD)

23 return d

—Richard Bellman, Eye of the Hurricane: An Autobiography
(1984, excerpts from page 159)

Where did the name, dynamic programming, come from? The
1950s were not good years for mathematical research.

We had a very interesting gentleman in Washington

named Wilson. He was Secretary of Defense, and he actually
had a pathological fear and hatred of the word "research”... He
would turn red, and he would get violent if people used the term
research in his presence. You can imagine how he felt, then,
about the term mathematical.

| felt I had to do something to shield Wilson ... from the fact that |
was really doing mathematics... What title, what name, could |
choose? In the first place | was interested in planning, in decision
making, in thinking. But planning, is not a good word for various
reasons. | decided therefore to use the word “programming.” |
wanted to get across the idea that this was “dynamic,” this was
multistage, this was time-varying. | thought, let's kill two birds with
one stone.

1 thought dynamic programming was a good name.
It was something not even a Congressman could object to.

“Bottom-up recursion”
might also a reasonable
ame, !

12

COMPUTING FIBONACCI NUMBERS INEFFICIENTLY

A TOY EXAMPLE TO COMPARE D&C TO DYNAMIC PROGRAMMING

1 BadFib(n)
2 if n == 0 or n == 1 then return n

3 return BadFil + BadFib(n-2)

WHY IS THIS SO SLOW?

The Recursion Tree to Evaluate f;:
Subproblems have

LOTS of overlap!

Every subtree on
the right appears
on the left

... recursively ...

Each subtree is
computed

exponentially
often inits depth

This overlap suggests dynamic
programming may be able to help! 7

Designing Dynamic Programming Algorithms (cont.)

Recurrence Relation
Derive a recurrence relation on the optimal solutions to the
instances in §(I). This recurrence relation should be
completely specified in terms of optimal solutions to
(smaller) instances in §(T) and/or base cases.

Compute Optimal Solutions
Compute the optimal solutions to all the instances in S([).
Compute these solutions using the recurrence relation in a
bottom-up fashion, filling in a table of values containing
these optimal solutions. Whenever a particular table entry is
filled in using the recurrence relation, the optimal solutions
of relevant subproblems can be looked up in the table (they
have been computed already). The final table entry is the
solution to [I.

2024-09-25

RUNTIME

In unit cost model |1 BadFib(n)
2 if n == 0 or n == 1 then return n
(UNREAL'S“C!) 3 return BadFib(n-1) + BadFib(n-2)

Tn)=Tn—-1)+T(n—-2)+0(1) This O(1) would change in the bit
complexity model
T(n) =2 2T(n—2) +0(1)
T(n) <2T(n—1) +0(1)
n/2 levels of recursion for the first expression

n levels for the second expression
Work doubles at each level
T(n) is certainly in (2™%) and 0(2")

Designing Dynamic Programming Algorithms for
Optimization Problems

[(Oplimal) Recursive Structure
Examine the structure of an optimal solution to a problem
instance I, and determine if an optimal solution for I can be
expressed in terms of optimal solutions to certain
subproblems of I

Define Subproblems
Define a set of subproblems S(I) of the instance I, the
solution of which enables the optimal solution of [to be
computed. I will be the last or largest instance in the set
8.

SOLVING FIB USING DYNAMIC PROGRAMMING

(Optimal) Recursive Structure

Solution to n-th Fibonacci number f(n) can be expressed
as the addition of smaller Fibonacci numbers

No notion of optimality for this particular problem
Define Subproblems
The set subproblems that will be combined to obtain Fib(n)
is {Fib(n — 1), Fib(n — 2)}
S(1) = {Fib(0), Fib(1), ..., Fib(n)}
Recurrence Relation = {{(n— D+fln-2):
0
Computing (Optimal) Solutions
Create table f[1..n] and compute its entries “bottom-up™

13

FILLING THE TABLE "BOTTOM-UP”

Key idea:
When computing a table entry

Must have already computed
the entries it depends on!

Dependencies
Extract directly from recurrence
Entry n depends on n-1 and n-2

Computing entries in order 1..n
guarantees n-1 and n-2 are already
computed when we compute n

CORRECTNESS

st 1 Order 0..n meansi-1 and i-2 are already

ep computed when we compute i
Prove that when computing a table entry,
dependent entries are already computed

L. Suppose f[i-1] and f[i-2] are the
Step 2 (similar to D&C) (i-1)th and (i-2)th Fib #s
Suppose subproblems are Then prove f[i] = the n-th Fib #

solved correctly (optimally) FibD‘I:(n)

= new array of size n
Prove these (optimal)
subsolutions are combined
into a(n optimail) solution

for i = 2..

1
H
3
4
5
&
7 n
L f[i] = fi-1] + f[i-2)
a

0

return f[n] o

RUNNING TIME (UNIT COST)

T(n) € ©(n)

2024-09-25

DP SOLUTION sriboegy S represenis 12
2 fiz = 0 =
1 FibDP(n) 3 Fi1 =1 -Vepfesen'sfllrl]
= 4
; f = new array of size n . o o P Save fl] before
4 f[0] = 0 L] temp = fi overwriting it (so
5 f[1] =1 7 its value can be
B F fi = fi1 + i2 | storedin f[-1]
7 for i =2..n 2 _ later)
[fli] = fi-1] + fri-21 |10 fiz = T
5 11 fil = temp
10 return f[n] 12 .
13 return fi

Space saving optimization: ‘g
We neverlook at f[i-3] or earlier
Can make do with a few
variables instead of a table

This is still considered to be
dynamic programming...
We've just optimized out the table.

MODEL OF COMPUTATION FOR RUNTIME

Unit cost model is not very realistic for this problem,
because Fibonacci numbers grow quickly

F[10]=55
F[100]=354224848179261915075
F[300]=2222322446294204455297398934619099672066669390964997 64990979600
Value of F[n] is exponentialin n: f, € 0(¢p™) where ¢ = 1.6
¢™ needs log(¢p™) bits to store it But let's use unit cost
So F[n] needs ©(n) bits to store! anyway for simplicity

A BRIEF ASIDE

Express T(n) as a function

of the input size $ (in bits)
NO! This is “a linear function of n PRy

“py O ” 2 logn
Wh.en we say 'Ilnear run'hme we mean S0 T(n) € 602
“a linear function of the input size”
s
in the input size!

What is the input size 2
The input is the number n. .. but sfill exponentially
faster than 2™

Is this linear runtime?

How many bits does it take to store n2
O(logn)

So S = logn bits

14

UNLIKELY THAT WE GET HERE

DYNAMIC PROGRAMMING APPROACH

High level idea (can just think recursively to start)
Given arod of length n

Either make no cuts,
or make a cut and recurse on the remaining parts

O T T T 1)L eomer,]
(D) O]~ meometety + ncomecu |

Where should we cut?

RECURRENCE RELATION Z e e)

Define M (k) = maximum income for rod of length k

If we do not cut the rod, maxincome is py,
Ifwe do cut arod at i

CIITD) QI

max income is M(i) + M(k — i)

Want to maximize this over all i
max{M@+Mk-D} (for0<i<k
M(k) = max{p;, max; -1 (M) + M(k — D}

2024-09-25

ROD CUTTING

A “REAL" DYNAMIC PROGRAMMING EXAMPLE

Input:
n: length of rod

P, -, Pn: p; = price of arod of length i
Output:

Max income possible by cutting the rod of length n
into any number of integer pieces (maybe no cuts)

d of I th 4

DYNAMIC PROGRAMMING APPROACH

Try all ways of making that cut
l.e., try a cut at positions 1,2,...,n — 1
In each case, recurse on two rods [0, i] and [i,n]
Take the max income over all possibilities (each i / no cut)

=1 ()T IIITIITT) Spﬁmo\subs:ruch;vre:
=2 (D) CIIITTITTTTI)) rods wisies {ond 1 -
i=3 CIIITTITTTTTT)) [smoxincomewe can

s get from the rod size i

+maxincome we can
get from the rod size n — i

= O TTTITTITITITN O

COMPUTING SOLUTIONS BOTTOM-UP

Recurrence: M(k) = max{p;, maxygic,—1{M() + M(k — D}

Compute table of solutions: M[1..n]
MOt L LI L
1

n

Dependencies: entry k depends on -
MIi] > M[1..(k-1)]
M[k—i] > M[1..(k—1)]
All of these dependencies are < k
So we can fillin the table entries in order 1..n

15

1
2
3
4
5
6
7
8

9
10
1
12

RodCutting(n, p[1..n1)

Recall, semantically, M(k) = maximum income for rod of length k
Recurrence: M(k) = max{py, max;<<x—1 {M(D) + M(k — D}

M = new array[1..n]

// compute each entry M[k]
for k = 1..n
M[k] = p[k] // current best = no cuts

£/ try each cut in 1..(k-1)
for i = (k-1
M[K] = max(M[K], M[i] + M(k-1i])

return M[n]

l Aside: Is this a “quadratic fime" algorithm? l

Exercise: devise an even simpler DP solution
(hint: try “recursing” only once)

2024-09-25

MISCELLANEOUS TIPS

Building a table of results bottom-up
is what makes an algorithm DP

There is a similar concept called memoization

But, for the purposes of this course,
we want to see bottom-up table filling!

Base cases are critical

They often completely
determine the answer

Try setting f[0]=f[1]=0in FibDP...

16

