CS 341: Algorithms

Lecture 1: Introduction, review of asymptotics

Eric Schost

based on lecture notes by many other CS341 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Fall 2024

1/23

Staff

Instructors
® Trevor Brown
e Eric Schost (office hours Thursday, 2-3pm)

ISC

¢ Sylvie Davies

2 /23

Electronic communication

Course webpage:
® Course outline

® [ecture slides

Piazza
e Make sure you are signed up using your uwaterloo email address
® http://piazza.com/uwaterloo.ca/fall2024/cs341

® posting solutions to assignments is forbidden

email

® use your uwaterloo address

3/23

http://piazza.com/uwaterloo.ca/fall2024/cs341

Assignments, exams, etc

® 4 assignments (10% each)

e Midterm (20%)
® Monday October 28, 4:30-6:20pm

® Final (40%)
e TBA

4/23

References

® Slides
® posted before the lecture (usually)

® Textbooks
® Introduction to Algorithms, Cormen, Leiserson, Rivest, Stein [CLRS]
® Algorithm Design, Kleinberg, Tardos [KT]
® Algorithms, Dasgupta, Papadimitriou, Vazirani [DPV]

5/23

This course

What you should know
® (S240-level data strucures and algorithms
® big-O notation

® maybe a bit of math (matrices, for instance)

What we will do
® a lot of algorithms
® pseudo-code

® proofs for correctness and runtime

What we will not do

* read/write code in class

6/23

Tentative syllabus

¢ divide-and-conquer, master theorem
® greedy algorithms

¢ dynamic programming

® breadth-first and depth-first search
® shortest paths in graphs

e flows and cuts

® NP-completeness

7/23

Cost of algorithms
Inputs
e parameterized by an integer n, called the size

® e.g., length of an array that we want to work with

T(I) = runtime on input I runtime of a particular instance

T'(n) = maxy of size n L'(I) worst-case runtime

Taveg(n) = 21 ot size n (D) average runtime, not used much in this course
72 number of inputs of size g ’

Remark: we will sometimes use more than one parameter
® numbers of rows and columns in a matrix

® vertices and edges in a graph

8/23

Asymptotic notation

Consider two functions f(n), g(n) with values in R

big-O.
1. we say that f(n) € O(g(n)) if
there exist C' > 0 and ny, such that for n > ng, f(n) < Cg(n)

2g(n)

9(n)

9/23

Asymptotic notation
Consider two functions f(n), g(n) with values in R
big-€).

1. we say that f(n) € Q(g(n)) if
there exist C' > 0 and ng such that for n > ng, f(n) > Cg(n)

2. equivalent to g(n) € O(f(n))

9/23

Asymptotic notation

Consider two functions f(n), g(n) with values in R

@
1. we say that f(n) € O(g(n)) if f(n) € O(g(n)) and f(n) € Q(g(n)).

2. in particular true if lim, f(n)/g(n) = C for some 0 < C' < o0

9/23

Asymptotic notation

Consider two functions f(n), g(n) with values in R

little-o.

1. we say that f(n) € o(g(n)) if
for all C' > 0, there exists ng such that for n > ng, f(n) < Cg(n)

2. equivalent to lim, . f(n)/g(n) = 0.

9/23

Examples

o nF o nFl 4 g is in O(nF) ¢; and k constant!

O() means (at most) polynomial in n

271 is in ©(2")

(n—1)!is in ©(n!)

10/23

Definitions for several parameters

terminology - W' x +

C O & csstackexchange.com/questions/3149/what s-the-meaning-of-omn/3151 #3151

a < v % » 0@ (Upsae)

Q Search on Computer Science... _=, Sign up

Home
Believe it or not, it seems (in my experience) that many algorithms people

PUBLIC have actually not thought about what the big O notation formally means,
32 and when asked about it, you can get several different answers. Some

uestions . . .

®0 issues are discussed in the paper On Asymptotic Notation with Multiple
Tags Variables by Rodney R. Howell.
Users

Curiously, it also seems that most introductory algorithms courses spend
Companies lots of time being very formal about big O notation with a single variable,
and then the next weeks happily use the notation for graph algorithms with

Unanswered several variables in a casual way, without discussing what the notation
actually means.
TEAMS
Stack Overflow for Share Cite Improve this answer Follow answered Aug 13, 2012 at 19:49
Teams — Slart 1’!‘. Kristoffer Arnsfelt
collaborating and Sl Hansen
sharing organizational 561 o3 o7

11/23

Definitions for several parameters

Consider two functions f(n,m), g(n, m) with values in R
Definition

f(n,m) is in O(g(n,m)) if there exist C,ng, mg such that
f(n,m) < Cg(n,m) for n > ng or m > my (i.e. finitely many exceptions)

Remark:

e weaker definition: there exist C, ng, mg such that f(n,m) < Cg(n,m) for n > ng and
m > mg

e will not matter too much which one we choose

12 /23

Computational model: word RAM

Rough definition:
® memory locations contain integer words of b bits each

e assume b > log (n) for input size n
(an integer M uses log|M|/b words, integers in n°M) fit in O(1) words)

e Random Access Memory: can access any memory location at unit cost, basic operations
on words have unit costs

1323

Computational model: word RAM

Rough definition:
® memory locations contain integer words of b bits each

¢ assume b > log (n) for input size n
(an integer M uses log|M|/b words, integers in n°M) fit in O(1) words)

e Random Access Memory: can access any memory location at unit cost, basic operations
on words have unit costs

Sum(A[1..n])

1. s+ 0

2. fori=1,...,n
3. s+ s+ Al

Exercise
If all entries of A fit in a word, what is the cost?
13/23

Computational model: word RAM

Product(A[l..n])

1. s 1
2. fori=1,...,n
3. s+ s x Ali]

All entries of A fit in a word. Does this have the same runtime as the Sum algorithm
(previous slide)?

14/23

Computational model: word RAM

Product(A[1..n])

1. s+ 1
2. fori=1,...,n
3. s 4= s x Ali]

Exercise

All entries of A fit in a word. Does this have the same runtime as the Sum algorithm
(previous slide)?

More examples
® matrix multiplication algorithms (with word-size inputs) are OK
® other matrix algorithms (Gaussian elimination) need more care

¢ (weighted) graph algorithms (weights fit in a word) are usually OK

14 /23

Case study: maximum subarray

Given an array A[l..n], find a contiguous subarray A[i..j] that maximizes the sum
Ali] + - -+ A[j]. All entries fit in a word.

Example. Given
A=][10,-5,4,3,-5,6,—1, —1]

the subarray
A[l..6] = [10,—5,4, 3, —5, 6]

has sum 10+ ---+ 6 = 13. It is the best we can do.

Convention. We can take j < 4, so A[i..j] is empty, and the sum is zero.

15/23

Brute force algorithm

BruteForce(A)
opt <0
for i < 1 ton do
for j + i ton do
sum <+ 0
for k + i to j do
sum < sum + A[k]
if sum > opt
opt < sum

© 0N Ok W

return opt

16 /23

Brute force algorithm

Runtime: ©(n3)

BruteForce(A)
opt <0
for i < 1 ton do
for j + i ton do
sum <+ 0
for k + i to j do
sum < sum + A[k]
if sum > opt
opt < sum

© 0N Ok W

return opt

16 /23

Improved brute force algorithm

Idea: we recompute the same sum many times in the j loop.

17 /23

Improved brute force algorithm

Idea: we recompute the same sum many times in the j loop.

Runtime: ©(n?)

BetterBruteForce(A)
opt <0
for i +— 1 ton do
sum < 0
for j + i ton do
sum <+ sum + A[j]
if sum > opt
opt < sum

® N W=

return opt

17 /23

Divide-and-conquer

Idea: solve the problem twice in size n/2 (we assume n is a power of 2). Then the optimal
subarray (if not empty)

1. is completely in the left half A[1..n/2]
2. or is completely in the right half A[n/2 + 1..n]
3. or contains both A[n/2] and A[n/2 + 1]

(cases mutually exclusive.)

18 /23

Divide-and-conquer

Idea: solve the problem twice in size n/2 (we assume n is a power of 2). Then the optimal
subarray (if not empty)

1. is completely in the left half A[1..n/2]

2. or is completely in the right half A[n/2 + 1..n]

3. or contains both A[n/2] and A[n/2 + 1]

(cases mutually exclusive.)

To find the optimal subarray in case 3, write

Ali] + -+ A[j] = Afil + -+ + Aln/2 + Aln/2 + 1] + - + A[j]

18 /23

Divide-and-conquer

Idea: solve the problem twice in size n/2 (we assume n is a power of 2). Then the optimal
subarray (if not empty)

1. is completely in the left half A[1..n/2]
2. or is completely in the right half A[n/2 + 1..n]
3. or contains both A[n/2] and A[n/2 + 1]

(cases mutually exclusive.)

To find the optimal subarray in case 3, write
Ali] + -+ Al = Ali] + -+ An/2] + Aln/2 + 1] + - - - + Aj]

more abstractly: F'(i,7) = f(i) + g(j),foriin1,...,n/2 and jinn/2+1,...,n

To maximize F'(i,j), maximize f(i) and g(j) independently.

1823

Divide-and-conquer

Idea: solve the problem twice in size n/2 (we assume n is a power of 2). Then the optimal
subarray (if not empty)

1. is completely in the left half A[1..n/2]
2. or is completely in the right half A[n/2 + 1..n]
3. or contains both A[n/2] and A[n/2 + 1]

(cases mutually exclusive.)

To find the optimal subarray in case 3, write
Ali] + -+ Al = Ali] + -+ An/2] + Aln/2 + 1] + - - - + Aj]

more abstractly: F'(i,7) = f(i) + g(j),foriin1,...,n/2 and jinn/2+1,...,n

To maximize F'(i,j), maximize f(i) and g(j) independently.

18 /23

Maximizing half-sums

Runtime: ©(n)

MaximizeLowerHalf(A)
opt < Aln/2]
sum <— A[n/2]
fori=n/2-1,...,1do
sum < sum + A[i]
if sum > opt
opt < sum
return opt

RN

1923

Maximizing half-sums

Runtime: ©(n)

Runtime: ©(n)

MaximizeLowerHalf(A)
opt < Aln/2]
sum <— A[n/2]
fori=n/2-1,...,1do

sum < sum + A[i]

if sum > opt

opt < sum

return opt

RN

MaximizeUpperHalf(A)
1.

1923

Main algorithm

DivideAndConquer(A[l..n])

if n =1 return max(A[1],0)

opty, < DivideAndConquer(A[1..n/2])

opty,; < DivideAndConquer(A[n/2 + 1..n])

0Pty iddle < MaximizeLowerHalf(A) + MaximizeUpperHalf(A)
return max(opti,, 0pty;, OPtmiddie)

A i S

20 /23

Main algorithm

DivideAndConquer(A[l..n])

if n =1 return max(A[1],0)

opty, < DivideAndConquer(A[1..n/2])

opty,; < DivideAndConquer(A[n/2 + 1..n])

0Pty iddle < MaximizeLowerHalf(A) + MaximizeUpperHalf(A)
return max(opti,, 0pty;, OPtmiddie)

Otk o =

Runtime: T'(n) = 2T (n/2) + ©(n) so T'(n) € O(nlog(n))

Proof: same as MergeSort. Details in next module.

20 /23

Dynamic programming (time permitting)

Idea: solve the problem in subarrays A[l..j] of sizes 1,...,n. The optimal subarray
1. is either a subarray of A[l..n — 1],
2. or contains A[n]

(cases mutually exclusive!)

21 /23

Dynamic programming (time permitting)

Idea: solve the problem in subarrays A[l..j] of sizes 1,...,n. The optimal subarray
1. is either a subarray of A[l..n — 1],
2. or contains A[n]

(cases mutually exclusive!)

Translation: write M (j) = max sum for subarrays of A[1..j]. Then

M(n) = max(M(n —1), M(n))

with M(j) = max sum for subarrays of A[l..j], that include j.

21 /23

Dynamic programming (time permitting)

How can we compute M(1),..., M(n)?

Idea. As before: the optimal subarray that contains A[n]
1. is of the form A[i..n — 1,n], for some i <n — 1
2. or is exactly [A[n]]

(cases mutually exclusive)

22 /23

Dynamic programming (time permitting)

How can we compute M(1),..., M(n)?

Idea. As before: the optimal subarray that contains A[n]
1. is of the form A[i..n — 1,n], for some i <n — 1
2. or is exactly [A[n]]

(cases mutually exclusive)

Translation: M (n) = max(M(n — 1) + A[n], A[n]) = A[n] + max(M(n — 1),0)

Can eliminate recursive calls, and write as a loop.

1. M + A[1]
2. forij2,...,ndo o
3. M <+ Ali] + max (M, 0)

22 /23

Main algorithm (time permitting)

Runtime: ©(n)

DynamicProgramming(A)

M + A[1]
M « max(M,0)
fori=2,...,n do

M <+ Ali] + max(M,0)
M <+ max(M, M)
return M

AN

23/23

