CS 341: Algorithms

Lecture 2: Solving recurrences

Eric Schost

based on lecture notes by many other CS341 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Fall 2024

1/15

From exact to sloppy recurrences

2/15

Overview
Consider a recursive algorithm Algo.

Assumption: for an input size n > 1, Algo does

® a recursive calls, in size either [n/b] or [n/b] (a > 0 and b > 1, constants)
® between ¢’n¥ and cn¥ extra operations. (c and ¢’ nonzero constants, y constant)
Claim

Solving the sloppy recurrence T'(n) = aT'(n/b) 4+ cn¥ for powers of b gives a valid
©-bound for best and worst-case runtimes.

3/15

Overview
Consider a recursive algorithm Algo.

Assumption: for an input size n > 1, Algo does

® a recursive calls, in size either [n/b] or [n/b] (a > 0 and b > 1, constants)
® between ¢’n¥ and cn¥ extra operations. (c and ¢’ nonzero constants, y constant)
Claim

Solving the sloppy recurrence T'(n) = aT'(n/b) 4+ cn¥ for powers of b gives a valid
O-bound for best and worst-case runtimes.
Remark 1: if we only know that we do at most cn¥ extra operations, we only get a big-O.

Remark 2: to be concrete, we’ll do the proof for mergesort.
® one recursive call with [n/2], the other with [n/2], and roughly n extra operations.

¢ soa=b=2andy=1

3/15

Best and worst-case recurrence relations

Let T%(n), T%(n) be the worst case, resp. best case in size n.

Worst-case recurrence: T%(1) = d and

T(n) < T GZD +Tv QZJ) Yen ifn>1

Best-case recurrence: T°(1) = d’ and

Tb(n)>Tb<[2D+TbQ2J>+cn if n > 1

4/15

Best and worst-case recurrence relations

Let T%(n), T%(n) be the worst case, resp. best case in size n.

Worst-case recurrence: T%(1) = d and

T(n) < T GZD +Tv QZJ) Yen ifn>1

Best-case recurrence: T°(1) = d’ and

Tb(n)>qu2D+TbQ2J>+cn if n > 1

Remark: could be possible to write = instead or < or >, but harder to prove

4/15

Worst-case analysis

Use an equal sign: define T by

T1)=d, T(n) =T<[%D +TQ%J> ten ifn>1

T%(n) < T(n) and T'(n) increasing (easy induction)

Remark: same thing can be done for T%(n).

5/15

Worst-case analysis (cont.)

Sloppy recurrence:

t1)=d, t(n)=2t (;‘) ten ifn>1

Observations
e this only defines ¢(n) for powers of 2.
e T(2%) = t(2F) for any k

e T is increasing so T'(n) < T'(next power of 2) = ¢(next power of 2)

Conclusion:
® enough to analyze t(n), n a power of 2

e we’'ll do it using the recursion tree

6/15

The mergesort recursion tree

size n cn
size n/2 cn
logy(n) + 1
/N /N /N /N
/ \ / \ / \ / \
/ \ / \ / \ / \
. / \ / \ / \ / \
size]l e ° ° ° ° ° ° ° dn

Total: t(n) = cnlogy(n) + dn for n a power of 2.

Consequences
* T(n) € O(nlog(n))
* T%(n) € O(nlog(n))

7/15

The mergesort recursion tree

size n

size n/2
logy(n) +1

sizel @ ° ° ° ° Y

Total: t(n) = cnlogy(n) + dn for n a power of 2.

Consequences
* T(n) € O(nlog(n))
e T%(n) € O(nlog(n))
Remark: same approach proves T?(n) € Q(nlog(n)), and so

T®(n),T*(n) € ©(nlog(n))

cn

cn

dn

7/15

The master theorem

8/15

The master theorem

Solves many recurrence relations coming from divide-and-conquer algorithms.

Suppose that @ > 1 and b > 1. Consider the recurrence

T(n) :aT<Z> +cen? n>1

Let
x = logya (soa=>5").
Then
O(nY) if y > ax (root heavy)
T(n) € < O(nYlogn) ify==x (balanced)
O(n”) if y <ax (leaf heavy)

We do the proof for n a power of b; result true for n € Rxo.

9/15

Recursion tree
Suppose that n = b/, a > 1, b > 2 are integers and

n

T(n):aT(b)+cny, T(1) =d.

10/ 15

Recursion tree
Suppose that n = b/, a > 1, b > 2 are integers and

) +cn?,

size n

size
0

size y”z

log,

Gia I
slze 35

T(n) = aT(

n

b

a branches

cn?

Cajil(b/n—l)u

10/ 15

Breakdown of the cost

Suppose that ¢ > 1 and b > 2 are integers and

n

T(n):aT(b>+cny, T(1) =d.

Let n =¥.
size of subproblem # nodes cost/node total cost
n==u 1 cnY cn?
n/b=b"1 a c(n/b)Y ca(n/b)Y
n/b? = b2 a? c(n/b?)Y ca? (n/b?)Y
n/bi=1 =b a/~t cn/V=1Y cal=t (n/bI—1)Y
n/ =1 a’ d da’

11/15

Computing 7'(n)
Total:

j—1 i J—1 i
. a - a
T(n)=da’ +cn?> <by> = dn" 4 cn? ZE: (by) :

1=0 i=0

Proof: a = b* and n = b7, so @/ = (b””)j = (b7)9” =nZ.

12/15

Computing 7'(n)

Total:
4 = AN = aNd
—dd y L) gnt y hal
T(n)=da’ +cn 2_0 <by> =dn” +cn E_O (by) :

Proof: a = b* and n = b7, so @/ = (b”")j = (b7)9” =nZ.

Observation: geometric sum with ratio r = 5 = b*~¥:

cifr <1 > <y Y.re0(l),soT(n)ecOn)
e ifr=1 <= x=1y: > r" €0(logn), so T(n) € O(nYlogn)
eifr>1 < x>y Y. rt (), soT(n) €O

Proof (last item):

. J x
e
Wi oy

12/15

Examples

T(n) =4T(n/2) +n multiplying polynomials
®a=4b=2 y=1s0x=1logya=2and T(n) = O(n?)

13/15

Examples

T(n) =4T(n/2) +n multiplying polynomials
®a=4b=2 y=1s0x=1logya=2and T(n) = O(n?)

T(n) = 2T(n/2) + n?
®a=2b=2 y=2s0ox=1logya=1and T(n) = O(n?)

13/15

Examples

T(n) =4T(n/2) +n multiplying polynomials
®a=4b=2 y=1s0x=1logya=2and T(n) = O(n?)

T(n) = 2T(n/2) + n?
®a=2b=2 y=2s0ox=1logya=1and T(n) = O(n?)

T(n)=2T(n/4)+1 kd-trees
e a=2b=4,y=0s0z=1logya=1/2and T(n) = O(y/n)

13/15

Examples

T(n)=T(n/2)+1 binary search
*a=1,b=2y=0s0z=1logya=0and T(n) = O(logn)

14/15

Examples

T(n)=T(n/2)+1 binary search
*a=1,b=2y=0s0z=1logya=0and T(n) = O(logn)

T(n)=T(n/2)+n amortized analysis of dynamic arrays
*a=1,b=2y=1s0z=logy,a=0and T(n) = 6O(n)

14/15

Examples

T(n)=T(n/2)+1 binary search
*a=1,b=2y=0s0z=1logya=0and T(n) = O(logn)

T(n)=T(n/2)+n amortized analysis of dynamic arrays
*a=1,b=2y=1s0z=logy,a=0and T(n) = 6O(n)

T(n)=T(n/2)
® does not fit in our framework, but obvious

14/15

Examples

T(n)=T(n/2)+1 binary search
*a=1,b=2y=0s0z=1logya=0and T(n) = O(logn)

T(n)=T(n/2)+n amortized analysis of dynamic arrays

ca=1,b=2y=1s0ox=1logya=0and T(n) =0O(n)

T(n)=T(n/2)
® does not fit in our framework, but obvious

T(n) =2T(n/2) +nlog(n)
¢ does not fit in our framework, have to redo the recursion tree analysis

14/15

Alternative: guess and prove
Consider T'(n) = 2T (n/2) + n, T(1) = 0, n power of 2.

15/ 15

Alternative: guess and prove
Consider T'(n) = 2T (n/2) + n, T(1) = 0, n power of 2.

Guess: T'(n) < n. Proof by induction? Assume 7'(n/2) < n/2.

T(n)=2T(n/2)+n<2(n/2)+n=2n<%n

15/ 15

Alternative: guess and prove

Consider T'(n) = 2T (n/2) + n, T(1) = 0, n power of 2.

Guess: T'(n) < n. Proof by induction? Assume 7'(n/2) < n/2.
T(n)=2T(n/2)+n<2(n/2)+n=2n<%n

Guess: T'(n) < kn, k TBD? Assume T'(n/2) < kn/2.

T(n)=2T(n/2)+n <2(kn/2)+n=kn+n £ kn

15/ 15

Alternative: guess and prove
Consider T'(n) = 2T (n/2) + n, T(1) = 0, n power of 2.
Guess: T'(n) < n. Proof by induction? Assume 7'(n/2) < n/2.
T(n)=2T(n/2)+n<2(n/2)+n=2n<%n
Guess: T'(n) < kn, k TBD? Assume T'(n/2) < kn/2.
T(n)=2T(n/2)+n <2(kn/2)+n=kn+n £ kn
Guess: T'(n) < knlogyn, k TBD? Assume T'(n/2) < kn/2logy(n/2).
T(n) =2T(n/2) +n < 2(kn/2logy(n/2)) + n =knlogyn — kn +n

proof by induction OK if & > 1.

15/ 15

Alternative: guess and prove
Consider T'(n) = 2T (n/2) + n, T(1) = 0, n power of 2.
Guess: T'(n) < n. Proof by induction? Assume 7'(n/2) < n/2.
T(n)=2T(n/2)+n<2(n/2)+n=2n<%n
Guess: T'(n) < kn, k TBD? Assume T'(n/2) < kn/2.
T(n)=2T(n/2)+n <2(kn/2)+n=kn+n £ kn
Guess: T'(n) < knlogyn, k TBD? Assume T'(n/2) < kn/2logy(n/2).
T(n) =2T(n/2) +n < 2(kn/2logy(n/2)) + n =knlogyn — kn +n

proof by induction OK if & > 1.

Remark: usually harder to prove T'(n) = - -

15/ 15

