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The framework
To solve a problem in size n:

Divide
• break the input into smaller problems
• ideally few such problems, all of size n/b for some constant b

Conquer
• solve these subproblems recursively

Recombine
• deduce the solution of the main problem from the subproblems

When should you use this?
• original problem nicely decomposable (not much overlap in the subproblems)
• combining solutions is not too costly
• subproblems are not overly unbalanced
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Polynomial and matrix multiplication
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Multiplying polynomials

Goal: given F = f0 + · · ·+ fn−1xn−1 and G = g0 + · · ·+ gn−1xn−1, compute

H = FG = f0g0 + (f0g1 + f1g0)x + · · ·+ fn−1gn−1x2n−2

Remark: assume all fi and gi fit in one word. Then, input and output size Θ(n), easy
algorithm in Θ(n2).

1. for i = 0, . . . , n− 1 do
2. for j = 0, . . . , n− 1 do
3. hi+j = hi+j + figj
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Divide and conquer
Idea: write F = F0 + F1xn/2, G = G0 + G1xn/2. Then

H = F0G0 + (F0G1 + F1G0)xn/2 + F1G1xn

Analysis:
• 4 recursive calls in size n/2
• Θ(n) additions to compute F0G1+F1G0
• multiplications by xn/2 and xn are free
• Θ(n) additions to handle overlaps

(Sloppy) recurrence: T (n) = 4T (n/2) + cn
• a = 4, b = 2, y = 1 so T (n) ∈ Θ(n2)

Not better than the naive algorithm. We do the same operations.

Exercise

Use one multiplication of polynomials to get F0G1 + F1G0, starting from F0, F1, G0,
G1, F0G0, F1G1
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Karatsuba’s algorithm
Idea: use the identity

(F0+F1xn/2)(G0+G1xn/2) = F0G0+((F0 + F1)(G0 + G1)−F0G0−F1G1)xn/2+F1G1xn

Analysis:
• 3 recursive calls in size n/2
• Θ(n) additions to compute F0 + F1 and G0 + G1
• multiplications by xn/2 and xn are free
• Θ(n) additions and subtractions to combine the results

Recurrence: T (n) = 3T (n/2) + cn

• a = 3, b = 2, y = 1 so T (n) ∈ Θ(nlog2 3) log2 3 = 1.58 . . .

Remark: key idea = a formula for degree-1 polymomials that does 3 multiplications
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Toom-Cook and FFT

Took-Cook:
• a family of algorithms based on similar expressions as Karatsuba
• for k ≥ 2, 2k − 1 recursive calls in size n/k

• so T (n) ∈ Θ(nlogk(2k−1))
• gets as close to exponent 1 as we want (but very slowly)

FFT:
• if we use complex coefficients, FFT can be used to multiply polynomials
• FFT follows the same recurrence as merge sort, T (n) = 2T (n/2) + cn

• so we can multiply polynomials in Θ(n log(n)) ops over C
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Multiplying matrices

Goal: given A = [ai,j]1≤i,j≤n and B = [bj,k]1≤j,k≤n compute C = AB

Remark: input and output size Θ(n2), easy algorithm in Θ(n3)

1. for i = 1, . . . , n do
2. for j = 1, . . . , n do
3. for k = 1, . . . , n do
4. ci,k = ci,k + ai,jbj,k
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Divide and conquer

Setup: write

A =
(

A1,1 A1,2
A2,1 A2,2

)
B =

(
B1,1 B1,2
B2,1 B2,2

)
with all Ai,k, Bi,j of size n/2× n/2. Then

C =
(

A1,1B1,1 + A1,2B2,1 A1,1B1,2 + A1,2B2,2
A2,1B1,1 + A2,2B2,1 A2,1B1,2 + A2,2B2,2

)

Naively: 8 recursive calls in size n/2 + Θ(n2) additions =⇒ T (n) ∈ Θ(n3)

Goal: find a better formula for 2× 2 matrices
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Strassen’s algorithm

Compute∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Q1 = (A1,1 −A1,2)B2,2
Q2 = (A2,1 −A2,2)B1,1
Q3 = A2,2(B1,1 + B2,1)
Q4 = A1,1(B1,2 + B2,2)
Q5 = (A1,1 + A2,2)(B2,2 −B1,1)
Q6 = (A1,1 + A2,1)(B1,1 + B1,2)
Q7 = (A1,2 + A2,2)(B2,1 + B2,2)

and

∣∣∣∣∣∣∣∣∣
C1,1 = Q1 −Q3 −Q5 + Q7
C1,2 = Q4 −Q1
C2,1 = Q2 + Q3
C2,2 = −Q2 −Q4 + Q5 + Q6

Analysis: 7 recursive calls in size n/2 + Θ(n2) additions =⇒ T (n) ∈ Θ(nlog2(7))
log2(7) = 2.80 . . .
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Faster algorithms: AI to the rescue
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Beyond Strassen

Direct generalization
• an algorithm that does k multiplications for matrices of size ℓ gives

T (n) ∈ Θ(nlogℓ(k)) (we always have k > ℓ2, so no log)

A challenge: find best k for small values of ℓ

• SAT solving, gradient descent, . . .
• AlphaTensor found some better values, but none beats Strassen (except for matrices

over {0, 1}, with operations modulo 2)

Best exponent to date (using more than just divide and conquer)
• O(n2.37188), improves from previous record O(n2.37286)
• galactic algorithms
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Counting inversions
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Counting inversions

Goal: given an unsorted array A[1..n], find the number of inversions in it.
Def: (i, j) is an inversion if i < j and A[i] > A[j]

Example: with A = [1, 5, 2, 6, 3, 8, 7, 4], we get

(2, 3), (2, 5), (2, 8), (4, 5), (4, 8), (6, 7), (6, 8), (7, 8)

Remark 1. we show the indices where inversions occur

Remark 2. easy algorithm (two nested loops) in Θ(n2)

Remark 3. to do better than n2, we cannot list all inversions
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Toward a divide and conquer algorithm
Idea
• cℓ = number of inversions in A[1..n/2]
• cr = number of inversions in A[n/2 + 1..n]
• ct = number of transverse inversions with i ≤ n/2 and j > n/2
• return cℓ + cr + ct

Example: with A = [1, 5, 2, 6, 3, 8, 7, 4]
• cℓ = 1 (2, 3)
• cr = 3 (6, 7), (6, 8), (7, 8)
• ct = 4 (2, 5), (2, 8), (4, 5), (4, 8)

cℓ and cr done recursively. What about ct?
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Transverse inversions
Goal: how many pairs (i, j) with i ≤ n/2, j > n/2, A[i] > A[j]?

Example: with A = [1, 5, 2, 6, 3, 8, 7, 4], we get

ct = #i’s greater than 3 + #i’s greater than 8 + #i’s greater than 7 + #i’s greater than 4
or

ct = #j’s less than 1 + #j’s less than 5 + #j’s less than 2 + #j’s less than 6

Observation: this number does not change if both sides are sorted, so assume that left and
right are sorted after the recursive calls.

Example: With the same input, we get

[1, 2, 5, 6, 3, 4, 7, 8]

ct = #j’s less than 1 + #j’s less than 2 + #j’s less than 5 + #j’s less than 6
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Option 1
Algorithm: binary-search all left elements in the right subarray. Then mergesort.

• this is O(log(n)) per i, so total O(n log(n))
• after that, another Θ(n log(n)) for sorting
• recurrence: T (n) = 2T (n/2) + cn log(n)
• gives T (n) ∈ Θ(n log2(n))

Proof:
T (n) = 2T (n/2) + n log(n)

= 4T (n/4) + n log(n/2) + n log(n)
= · · · = n(log(n) + log(n/2) + · · ·+ log(2))
≤ n log2(n)

Exercise

Prove T (n) ∈ Ω(n log2(n))
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Option 2: enhance mergesort

Observation: if left and right side are sorted, no need to sort everything, just merge

Goal: find ct during merge.

Merge(A[1..n]) (both halves of A assumed sorted)
1. copy A into a new array S
2. i = 1; j = n/2 + 1;
3. for (k ← 1; k ≤ n; k++) do
4. if (i > n/2) A[k]← S[j++]
5. else if (j > n) A[k]← S[i++]
6. else if (S[i] < S[j]) A[k]← S[i++]
7. else A[k]← S[j++]

When we insert S[i] back in A, need to count how many j’s have been processed already
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EnhancedMerge(A[1..n]) (both halves of A assumed sorted)
1. copy A into a new array S; c = 0
2. i = 1; j = n/2 + 1;
3. for (k ← 1; k ≤ n; k++) do
4. if (i > n/2) A[k]← S[j++]
5. else if (j > n) A[k]← S[i++]; c = c + n/2
6. else if (S[i] < S[j]) A[k]← S[i++]; c = c + j − (n/2 + 1)
7. else A[k]← S[j++]

Example: with [1, 2, 5, 6, 3, 4, 7, 8]
• when we insert 1 back into A, j = 5 so c = c + 0
• when we insert 2 back into A, j = 5 so c = c + 0
• when we insert 5 back into A, j = 7 so c = c + 2
• when we insert 6 back into A, j = 7 so c = c + 2

Enhanced merge is still Θ(n) so total remains Θ(n log(n)).
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