CS 341: Algorithms

Lecture 3: Divide and conquer

Eric Schost

based on lecture notes by many other CS341 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Fall 2024

1/19

The framework
To solve a problem in size n:
Divide
® break the input into smaller problems

e ideally few such problems, all of size n/b for some constant b

Conquer

® solve these subproblems recursively

Recombine

® deduce the solution of the main problem from the subproblems

When should you use this?
e original problem nicely decomposable (not much overlap in the subproblems)
® combining solutions is not too costly

® subproblems are not overly unbalanced

2/19

Polynomial and matrix multiplication

3/19

Multiplying polynomials

Goal: given F = fo+ -+ f12" tand G =go + +++ + gn_12™ 1, compute

H = FG = fogo + (fog1 + f190)x + - + fa—1gn—_12>""2

Remark: assume all f; and g; fit in one word. Then, input and output size ®(n), easy
algorithm in @(n?).

1. fort=0,...,n—1do
2. for j=0,...,n—1do
3. hivj = hivj + fig;

4/19

Divide and conquer
Idea: write F' = Fy + Fla:"/z,G = Gog + Glm"/z. Then
H = FyGy + (F()Gl + FlGo)IL“n/2 + F1Gx™

5/19

Divide and conquer
Idea: write F' = Fy + Flm"/2,G = Gog + Glaz"/z. Then

H = FyGy + (F()Gl + F1G0)1L“n/2 + [Giz™

Analysis:
® 4 recursive calls in size n/2
® ©(n) additions to compute FyG1+F1Gy
e multiplications by 22 and z" are free
® ©(n) additions to handle overlaps

(Sloppy) recurrence: T'(n) = 4T (n/2) + cn
®*a=4b=2y=1s0T(n) € O(n?)
Not better than the naive algorithm. We do the same operations.

5/19

Divide and conquer
Idea: write F' = Fy + Flm"/2,G = Gog + Glzc"/z. Then

H = FyGy + (F()Gl + F1G0)1L“n/2 + [Giz™

Analysis:
® 4 recursive calls in size n/2
® ©(n) additions to compute FyG1+F1Gy
e multiplications by 22 and z" are free
® ©(n) additions to handle overlaps

(Sloppy) recurrence: T'(n) = 4T (n/2) + cn
®*a=4b=2y=1s0T(n) € O(n?)
Not better than the naive algorithm. We do the same operations.

Exercise

Use one multiplication of polynomials to get FoG1 + F1 Gy, starting from Fy, Fy, Go,

G1, FoGo, F1Gy

5/19

Karatsuba’'s algorithm

Idea: use the identity

(F0+F1:L‘n/2)(G0+G11}n/2) = F0G0+((F0 + Fl)(Go + Gl)—F()GQ—FlGl)Q:‘n/2+F1G1:En

6/19

Karatsuba’'s algorithm

Idea: use the identity
(F0+F1:L‘n/2)(G0+G1$n/2) = F0G0+((F0 + Fl)(Go + Gl)—F()GQ—FlGl)Q:‘n/2+F1G1:En

Analysis:
® 3 recursive calls in size n/2
® ©(n) additions to compute Fy + F; and Gy + G
e multiplications by /2 and z™ are free

® ©(n) additions and subtractions to combine the results

Recurrence: T'(n) = 3T(n/2) + cn
®*a=3,b=2y=1s0T(n) € O(nl°s23) logy 3 =1.58...

6/19

Karatsuba’'s algorithm

Idea: use the identity
(F0+F1:En/2)(G0+G1$n/2) = F0G0+((F0 + Fl)(Go + Gl)—F()GQ—FlGl)Q:‘n/2+F1G1:En

Analysis:
® 3 recursive calls in size n/2
® ©(n) additions to compute Fy + F; and Gy + G
e multiplications by /2 and z™ are free

® ©(n) additions and subtractions to combine the results

Recurrence: T'(n) = 3T(n/2) + cn
®*a=3,b=2y=1s0T(n) € O(nl°s23) logy 3 =1.58...

Remark: key idea = a formula for degree-1 polymomials that does 3 multiplications

6/19

Toom-Cook and FFT

Took-Cook:
¢ a family of algorithms based on similar expressions as Karatsuba
e for k> 2, 2k — 1 recursive calls in size n/k
e so T(n) € ©(nloer(2k-1))

® gets as close to exponent 1 as we want (but very slowly)

FFT:
e if we use complex coefficients, FFT can be used to multiply polynomials
e FFT follows the same recurrence as merge sort, T'(n) = 2T(n/2) + cn

® so we can multiply polynomials in ®(n log(n)) ops over C

7/19

Multiplying matrices

Goal: given A = [a; j]i<i j<n and B = [bji]1<jk<n compute C = AB

Remark: input and output size ©(n?), easy algorithm in ©(n?)

fori=1,...,ndo
for j=1,....,ndo
for k=1,...,ndo
Cik = Cik + i jbj

Ll

8/19

Divide and conquer

Setup: write
A Aip
A —))
<A2,1 Az

with all A; , B; j of size n/2 x n/2. Then

_ (B Bip
Bs1 Bop

- A11B1g+ A12B21 A11Bia+ Ai12B22
A2 1B11+ A22Bo1 Az 1B12+ A28

Naively: 8 recursive calls in size n/2 + ©(n?) additions = T'(n) € O(n?)

Goal: find a better formula for 2 x 2 matrices

9/19

Strassen’s algorithm

Compute

Q1
Q2
Q3
Q4
Qs
Qs
Q7

(A11— A12)B22
(Ag1 — A22)Bi1
Az2(B11+ B21)
A11(B12 + Ba2)
(A1 + Az2) (B2 — By1)
(A11+ A21)(B11+ Bi2)
(A12 + A22)(B21 + B22)

and

Q1—Q3— Q5+ Q7
Qs — Q1
Q2+ Q3

—Q2— Qs+ Qs + Qs

Analysis: 7 recursive calls in size n/2 + ©(n?) additions = T'(n) € ©(n'°82(M)

log,(7) =2.80...

10/ 19

Faster algorithms: Al to the rescue

o&E lind's game playing Al Just beat 50 year ord in computer science | MIT Technology Review - Google Chrom]
7 DeepMind's gar x +

% U *»00

= MIT Technology Review Signin Subscribe

ARTIFICIAL INTELLIGENCE

DeepMind’s game-playing Al has beaten a 50-year-
oldrecord in computer science

The new version of AlphaZero discovered a faster way to do matrix
multiplication, a core problem in computing that affects thousands of
everyday computer tasks.

By Will Douglas Heaven
October 5,2022

11/19

Beyond Strassen

Direct generalization

® an algorithm that does k multiplications for matrices of size £ gives
T(n) € ©(n'os(k) (we always have k > ¢2, so no log)

12 /19

Beyond Strassen

Direct generalization

® an algorithm that does k multiplications for matrices of size £ gives
T(n) € ©(n'os(k) (we always have k > ¢2, so no log)

A challenge: find best k for small values of ¢
e SAT solving, gradient descent, ...

e AlphaTensor found some better values, but none beats Strassen (except for matrices
over {0,1}, with operations modulo 2)

12 /19

Beyond Strassen

Direct generalization

® an algorithm that does k multiplications for matrices of size £ gives
T(n) € ©(n'os(k) (we always have k > ¢2, so no log)

A challenge: find best k for small values of ¢

e SAT solving, gradient descent, ...
e AlphaTensor found some better values, but none beats Strassen (except for matrices
over {0,1}, with operations modulo 2)

Best exponent to date (using more than just divide and conquer)

® O(n?3788) improves from previous record O (n?-37286)

® galactic algorithms

12 /19

Counting inversions

13/ 19

Counting inversions

Goal: given an unsorted array A[l..n], find the number of inversions in it.

Def: (i,7) is an inversion if ¢ < j and A[i] > A[j]
Example: with A =[1,5,2,6,3,8,7,4], we get
(2,3),(2,5),(2,8),(4,5),(4,8),(6,7),(6,8),(7,8)

Remark 1. we show the indices where inversions occur

14 /19

Counting inversions

Goal: given an unsorted array A[l..n], find the number of inversions in it.

Def: (i,7) is an inversion if ¢ < j and A[i] > A[j]

Example: with A =[1,5,2,6,3,8,7,4], we get
(2,3),(2,5),(2,8),(4,5),(4,8),(6,7),(6,8),(7,8)

Remark 1. we show the indices where inversions occur

Remark 2. easy algorithm (two nested loops) in © (n?)

Remark 3. to do better than n?, we cannot list all inversions

14 /19

Toward a divide and conquer algorithm
Idea
® ¢, = number of inversions in A[l..n/2]
® ¢, = number of inversions in A[n/2 + 1..n]
® ¢; = number of transverse inversions with ¢ <n/2 and j > n/2

® return cyp + ¢, + ¢

Example: with A =[1,5,2,6,3,8,7,4]

°*c=1 (2,3)
® ¢ = 3 (67 7)7 (67 8)7 (77 8)
° =4 (2,5),(2,8),(4,5), (4,8)

cp and ¢, done recursively. What about ¢;?

15/ 19

Toward a divide and conquer algorithm
Idea
® ¢, = number of inversions in A[l..n/2]
® ¢, = number of inversions in A[n/2 + 1..n]
® ¢; = number of transverse inversions with ¢ <n/2 and j > n/2

® return cyp + ¢, + ¢

Example: with A =[1,5,2,6,3,8,7,4]

® ¢y = 1 (273)
® c. = 3 (677)7 (67 8)7 (77 8)
° ¢ =4 (2,5),(2,8),(4,5),(4,8)

c¢ and ¢, done recursively. What about ¢;?

15/ 19

Toward a divide and conquer algorithm
Idea
® ¢, = number of inversions in A[l..n/2]
® ¢, = number of inversions in A[n/2 + 1..n]
® ¢; = number of transverse inversions with ¢ <n/2 and j > n/2

® return cyp + ¢, + ¢

Example: with A =[1,5,2,6,3,8,7,4]

® ¢y = 1 (273)
® c. = 3 (677)7 (67 8)7 (77 8)
° ¢ =4 (2,5),(2,8),(4,5),(4,8)

cp and ¢, done recursively. What about ¢;?

15/ 19

Toward a divide and conquer algorithm
Idea
® ¢, = number of inversions in A[l..n/2]
® ¢, = number of inversions in A[n/2 + 1..n]
® ¢; = number of transverse inversions with ¢ <n/2 and j > n/2

® return cyp + ¢, + ¢

Example: with A =[1,5,2,6,3,8,7,4]

® ¢y = 1 (273)
® c. = 3 (677)7 (67 8)7 (77 8)
° ¢ =4 (2,5),(2,8),(4,5),(4,8)

cp and ¢, done recursively. What about ¢;?

15/ 19

Toward a divide and conquer algorithm
Idea
® ¢, = number of inversions in A[l..n/2]
® ¢, = number of inversions in A[n/2 + 1..n]
® ¢; = number of transverse inversions with ¢ <n/2 and j > n/2

® return cyp + ¢, + ¢

Example: with A =[1,5,2,6,3,8,7,4]

® ¢y = 1 (273)
® ¢ = 3 (67 7)7 (67 8)7 (77 8)
® c, =4 (275)7 (278)7 (47 5)7 (478)

c¢ and ¢, done recursively. What about ¢;?

15/ 19

Toward a divide and conquer algorithm
Idea
® ¢, = number of inversions in A[l..n/2]
® ¢, = number of inversions in A[n/2 + 1..n]
® ¢; = number of transverse inversions with ¢ <n/2 and j > n/2

® return cyp + ¢, + ¢

Example: with A =[1,5,2,6,3,8,7,4]

® ¢y = 1 (273)
® ¢ = 3 (67 7)7 (67 8)7 (77 8)
® c, =4 (275)7 (278)7 (47 5)7 (478)

cp and ¢, done recursively. What about ¢;?

15/ 19

Toward a divide and conquer algorithm
Idea
® ¢, = number of inversions in A[l..n/2]
® ¢, = number of inversions in A[n/2 + 1..n]
® ¢; = number of transverse inversions with ¢ <n/2 and j > n/2

® return cyp + ¢, + ¢

Example: with A =[1,5,2,6,3,8,7,4]

® ¢y = 1 (273)
® ¢ = 3 (67 7)7 (67 8)7 (77 8)
® c, =4 (275)7 (278)7 (47 5)7 (478)

cp and ¢, done recursively. What about ¢;?

15/ 19

Toward a divide and conquer algorithm
Idea
® ¢, = number of inversions in A[l..n/2]
® ¢, = number of inversions in A[n/2 + 1..n]
® ¢; = number of transverse inversions with ¢ <n/2 and j > n/2

® return cyp + ¢, + ¢

Example: with A =[1,5,2,6,3,8,7,4]

® ¢y = 1 (273)
® ¢ = 3 (67 7)7 (67 8)7 (77 8)
® c, =4 (275)7 (278)7 (47 5)7 (478)

cp and ¢, done recursively. What about ¢;?

15/ 19

Transverse inversions
Goal: how many pairs (i,j) with ¢« < n/2, 7 > n/2, Ali] > A[j]?
Example: with A =11,5,2,6,3,8,7,4], we get

¢t = ##1’s greater than 3 + #4’s greater than 8 + #1i’s greater than 7 + #4’s greater than 4
or

ct = #j’s less than 1 + #j’s less than 5 + #j’s less than 2 + #j’s less than 6

16 /19

Transverse inversions
Goal: how many pairs (i,j) with ¢« < n/2, 7 > n/2, Ali] > A[j]?
Example: with A =11,5,2,6,3,8,7,4], we get

¢t = ##1’s greater than 3 + #4’s greater than 8 + #1i’s greater than 7 + #4’s greater than 4
or

ct = #j’s less than 1 + #j’s less than 5 + #j’s less than 2 + #j’s less than 6

Observation: this number does not change if both sides are sorted, so assume that left and
right are sorted after the recursive calls.

Example: With the same input, we get
[1’ 27 57 67 3? 4? 7’ 8]

¢t = #j’s less than 1 4+ #j’s less than 2 4+ #j’s less than 5 + #;’s less than 6
16 /19

Option 1

Algorithm: binary-search all left elements in the right subarray. Then mergesort.

17 /19

Option 1

Algorithm: binary-search all left elements in the right subarray. Then mergesort.
e this is O(log(n)) per i, so total O(n log(n))
e after that, another ®(n log(n)) for sorting
® recurrence: T'(n) = 2T(n/2) 4+ cnlog(n)
* gives T'(n) € ©(nlog?(n))

17 /19

Option 1

Algorithm: binary-search all left elements in the right subarray. Then mergesort.
¢ this is O(log(n)) per i, so total O(n log(n))

after that, another ®(n log(n)) for sorting

recurrence: T'(n) = 2T (n/2) 4+ cnlog(n)

gives T'(n) € O(nlog?(n))

Proof:

2
4

/2) + nlog(n)
/4) + nlog(n/2) + nlog(n)

n(l g(n) 4+ log(n/2) + --- +log(2))

Prove T'(n) € Q(nlog?(n))

17/19

Option 2: enhance mergesort

Observation: if left and right side are sorted, no need to sort everything, just merge

Goal: find ¢; during merge.

Merge(A[l..n]) (both halves of A assumed sorted)
1 copy A into a new array S

2 i=1;7=n/2+1;

3 for (k< 1;k < n;k++) do

4. if (i >n/2) Alk] < S[j++]

5 else if (j > n) A[k] <= S[i++]

6 else if (S[i] < S[j]) A[k] < S[i++]
7 else A[k] «+ S[j++]

When we insert S[i] back in A, need to count how many j’s have been processed already

18/ 19

EnhancedMerge(A[1..n]) (both halves of A assumed sorted)
copy A into a new array S; ¢=10
i=1;7=n/2+1;
for (k+ 1; k <n; k++) do
if (i > n/2) A[k] «+ S[j++]
else if (j > n) Alk] «+ S[i++]; c=c+n/2
else if (S[i] < S[j]) Alk] < S[i++];c=c+ 75— (n/2+1)
else A[k] « S[j++]

N Ot W=

19/ 19

EnhancedMerge(A[1..n]) (both halves of A assumed sorted)
copy A into a new array S; ¢ =0
i=1;7=n/2+1;
for (k+ 1; k <n; k++) do
if (i > n/2) A[k] «+ S[j++]
else if (j > n) Alk] «+ S[i++]; c=c+n/2
else if (S[i] < S[j]) Alk] < S[i++];c=c+ 75— (n/2+1)
else A[k] « S[j++]

N Ot W=

Example: with [1,2,5,6,3,4,7, 8|
¢ when we insert 1 back into A, j =5soc=c+0
® when we insert 2 back into 4, j =5soc=c+0
® when we insert 5 back into 4, j =7soc=c+2
® when we insert 6 back into 4, j =7soc=c+2

Enhanced merge is still @ (n) so total remains ©(n log(n)).

19/ 19

