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Goals

This chapter: the greedy paradigm through examples
• job scheduling
• interval scheduling
• more scheduling
• fractional knapsack
• and so on

Computational model:
• word RAM
• assume all quantities we work with (weights, capacities, deadlines, . . . ) fit in a word
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Overview
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Greedy algorithms

Context: we are trying to solve a combinatorial optimization problem:
• have a large, but finite, set S
• want to find an element E in S that minimizes / maximizes a cost function

Greedy strategy:
• build E step-by-step
• don’t think ahead, just try to improve as much as you can at every step
• simple algorithms
• but usually, no guarantee to get the optimal
• it is often hard to prove correctness, and easy to prove incorrectness.
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Example: Huffman
Review from CS240: the Huffman tree
• we are given “frequencies” f1, . . . , fn for characters c1, . . . , cn

• we build a binary tree for the whole code

Greedy strategy: we build the tree bottom up.
• create n single-letter trees
• define the frequency of a tree as the sum of the frequencies of the letters in it
• build the final tree by putting together smaller trees: join the two trees with the least

frequencies

Claim

this minimizes
∑

i fi × {length of encoding of ci}

Proof: takes some work. Progressively transform any other solution into the greedy one.
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Minimizing completion time
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The problem

Input:
• n jobs, with processing times [t(1), . . . , t(n)]

Output:
• an ordering of the jobs that minimizes the sum T of the completions times
• completion time: how long it took (since the beginning) to complete a job

Example:
• n = 5, processing times [2, 8, 1, 10, 5]
• in this order,

T = 2 + (8 + 2) + (1 + 8 + 2) + (10 + 1 + 8 + 2) + (5 + 10 + 1 + 8 + 2) = 70
• in the order [1, 2, 5, 8, 10],

T = 1 + (2 + 1) + (5 + 2 + 1) + (8 + 5 + 2 + 1) + (10 + 8 + 5 + 2 + 1) = 54
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Greedy algorithm
Algorithm:
• order the jobs in non-decreasing processing times
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Greedy algorithm
Algorithm:
• order the jobs in non-decreasing processing times

Correctness (exchange argument)
• let L = [e1, . . . , en] be a permutation of [1, . . . , n]
• suppose that L is not in non-decreasing order of processing times.

Can it be optimal?
• by assumption there exists i such that t(ei) > t(ei+1)
• sum of the completion times of L is nt(e1) + (n − 1)t(e2) + · · · + t(en)
• the contribution of ei and ei+1 is (n − i + 1)t(ei) + (n − i)t(ei+1)
• now, swap ei and ei+1 to get a permutation L′

• their contribution becomes (n − i + 1)t(ei+1) + (n − i)t(ei)
• nothing else changes so T (L′) − T (L) = t(ei+1) − t(ei) < 0
• so L not optimal
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Greedy algorithm
Algorithm:
• order the jobs in non-decreasing processing times

Review from CS240
• optimal static order for linked list implementation of dictionaries
• same result (up to reverse), same proof
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Interval scheduling
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The problem

Input:
• n intervals I1 = [s1, f1], . . . , In = [sn, fn] start time, finish time
• also write sj = start(Ij), fj = finish(Ij)

Output:
• a choice T of intervals that do not overlap and that has maximal cardinality

Example: A car rental company has the following requests for a given day:
I1: 2pm to 8pm
I2: 3pm to 4pm
I3: 5pm to 6pm

Answer is T = [I2, I3].
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A few attempts

Attempt 1:
• pick the interval with the earliest starting time that creates no conflict

• no, previous example

Attempt 2:
• pick the shortest interval that creates no conflict
• no, for example

Attempt 3:
• pick the interval with the fewest overlaps that creates no conflict

• no, for example

  \item \red{no}, for example \includegraphics[height=0.5cm]{no2-cropped.pdf}

Attempt 4:
• pick the interval with the earliest finish time, that creates no conflict
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An O(n log(n)) implementation

Greedy(I = [I1, . . . , In])
1. T ← [ ]
2. sort I by non-decreasing finish time
3. for k = 1, . . . , n do
4. if Ik does not overlap the last entry in T
5. append Ik to T
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Correctness: greedy is optimal
Let
• T = [x1, . . . , xp] be the intervals chosen by algorithm,
• S = [y1, . . . , yq] be any choice without overlaps,
• both sorted by increasing finish time
• want to prove p ≥ q

Proof (again, by an exchange argument)
• by induction: for k = 0, . . . , q, p ≥ k and [x1, · · · , xk, yk+1, · · · , yq] has no overlap

and is sorted by increasing finish time
• OK for k = 0, so we suppose true for some k < q, and prove for k + 1
• since [x1, . . . , xk, yk+1] is satisfiable, the algorithm didn’t stop at xk. So p ≥ k + 1.
• by definition of xk+1, finish(xk+1) ≤ finish(yk+1). So we can replace yk+1 by xk+1 and

we get [x1, · · · , xk+1, yk+2, · · · , yq], which is still satisfiable and sorted by increasing
finish time
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Interval coloring
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The problem
Input:
• n intervals I1 = [s1, f1], . . . , In = [sn, fn] start time, finish time
• also write sj = start(Ij), fj = finish(Ij)

Output:
• assignment of colors to each interval
• overlapping intervals get different colors
• minimize the number of colors used overall

Remarks:
• another version: finding classrooms for lectures
• colors ↔ numbers 1, 2, . . .

• finish(Ij) = start(Ik) not an overlap
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A few attempts

Available colors:
· · ·

Attempt 1:
• sort intervals by non-decreasing finish times
• for j = 1, . . . , n, use the first possible color for Ij (no same-color overlap with

I1, . . . , Ij−1)

I4
I2

I3
I1

I4
I2

I3
I1

• does not work
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Correctness of the third attempt
Claim

Suppose the output uses k colors. Then, we cannot use fewer.

Proof
• suppose we color It with color k

• so It overlaps with k − 1 intervals, say Iα1 , . . . , Iαk−1 seen previously
• so for all j = 1, . . . , k − 1, sαj ≤ st < fαj

• so at time st, we can’t do with less than k colors

Exercises

• Θ(n log(n) + nk) easy. Give a Θ(n log(n)) algorithm
• write an exchange-based proof
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