CS 341: Algorithms

Lecture 5: Greedy algorithms

Eric Schost

based on lecture notes by many other CS341 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Fall 2024

1/19

Goals

This chapter: the greedy paradigm through examples
® job scheduling

¢ interval scheduling
¢ more scheduling
¢ fractional knapsack

® and so on

2/19

Goals

This chapter: the greedy paradigm through examples

job scheduling

¢ interval scheduling
¢ more scheduling

¢ fractional knapsack

® and so on

Computational model:
e word RAM

¢ assume all quantities we work with (weights, capacities, deadlines, ...) fit in a word

2/19

Overview

3/19

Greedy algorithms

Context: we are trying to solve a combinatorial optimization problem:
® have a large, but finite, set S

® want to find an element F in S that minimizes / maximizes a cost function

4/19

Greedy algorithms

Context: we are trying to solve a combinatorial optimization problem:
® have a large, but finite, set &

® want to find an element F in S that minimizes / maximizes a cost function

Greedy strategy:
® build E step-by-step

don’t think ahead, just try to improve as much as you can at every step

simple algorithms

but usually, no guarantee to get the optimal

it is often hard to prove correctness, and easy to prove incorrectness.

4/19

Example: Huffman
Review from CS240: the Huffman tree

® we are given “frequencies” fi,..., f, for characters ¢1,...,c,

® we build a binary tree for the whole code

5/19

Example: Huffman
Review from CS240: the Huffman tree

® we are given “frequencies” fy,..., f, for characters cy,...,c,

® we build a binary tree for the whole code

Greedy strategy: we build the tree bottom up.
® create n single-letter trees
® define the frequency of a tree as the sum of the frequencies of the letters in it

® build the final tree by putting together smaller trees: join the two trees with the least
frequencies

Claim

this minimizes), f; x {length of encoding of ¢;}

Proof: takes some work. Progressively transform any other solution into the greedy one.

5/19

Minimizing completion time

6/19

The problem

Input:

® n jobs, with processing times [t(1),...,t(n)]

7/19

The problem
Input:
® n jobs, with processing times [t(1),...,t(n)]

Output:
¢ an ordering of the jobs that minimizes the sum 7' of the completions times

® completion time: how long it took (since the beginning) to complete a job

7/19

The problem

Input:

® 1 jobs, with processing times [t(1),...,t(n)]

Output:
¢ an ordering of the jobs that minimizes the sum 7' of the completions times

® completion time: how long it took (since the beginning) to complete a job

Example:
e n =5, processing times [2,8,1, 10, 5]
¢ in this order,
T=2+ 842) + (1+8+2) + (10+1+8+4+2) + (5+10+1+8+2)="70
e in the order [1,2,5,8,10],
T=1+ 241) + b+2+1) + 8+5+2+1) + (10+8+5+2+1)=54

7/19

Greedy algorithm
Algorithm:

® order the jobs in non-decreasing processing times

8/19

Greedy algorithm

Algorithm:

order the jobs in non-decreasing processing times

Correctness (exchange argument)

let L =leq,...,e,] be a permutation of [1,...,n]

suppose that L is not in non-decreasing order of processing times.
Can it be optimal?

by assumption there exists ¢ such that t(e;) > t(e;t1)

sum of the completion times of L is nt(e1) + (n — 1)t(e2) + - -+ + t(en)
the contribution of e; and e; 41 is (n — ¢ + 1)t(e;) + (n — 2)t(eit1)

now, swap ¢; and e;; to get a permutation L’

their contribution becomes (n — ¢ 4 1)t(e;+1) + (n — 7)t(e;)

nothing else changes so T(L') — T'(L) = t(ei+1) — t(e;) <0

so L not optimal

8/19

Greedy algorithm
Algorithm:

® order the jobs in non-decreasing processing times

Review from CS240
® optimal static order for linked list implementation of dictionaries

® same result (up to reverse), same proof

8/19

Interval scheduling

9/19

The problem

Input:
e n intervals Iy = [s1, fi], ..., In = [Sn, [n] start time, finish time
® also write s; = start(I;), f; = finish(I;)

10/ 19

The problem

Input:
e n intervals Iy = [s1, fi], ..., In = [Sn, [n] start time, finish time
® also write s; = start(I;), f; = finish(I;)

Output:

® a choice T of intervals that do not overlap and that has maximal cardinality

10/ 19

The problem

Input:
e n intervals Iy = [s1, fi], ..., In = [Sn, [n] start time, finish time
® also write s; = start(I;), f; = finish(I;)

Output:

® a choice T of intervals that do not overlap and that has maximal cardinality

Example: A car rental company has the following requests for a given day:
Ii: 2pm to 8pm
I5: 3pm to 4pm
I3: 5pm to 6pm

Answer is T' = [I2, I3].

10/ 19

A few attempts

Attempt 1:

® pick the interval with the earliest starting time that creates no conflict

11/19

A few attempts

Attempt 1:
® pick the interval with the earliest starting time that creates no conflict

® no, previous example

11/19

A few attempts

Attempt 1:
® pick the interval with the earliest starting time that creates no conflict
® no, previous example

Attempt 2:

® pick the shortest interval that creates no conflict

11/19

A few attempts

Attempt 1:
® pick the interval with the earliest starting time that creates no conflict
® no, previous example

Attempt 2:

® pick the shortest interval that creates no conflict

® no, for example

11/19

A few attempts

Attempt 1:
® pick the interval with the earliest starting time that creates no conflict
® no, previous example

Attempt 2:

® pick the shortest interval that creates no conflict

® no, for example

Attempt 3:

® pick the interval with the fewest overlaps that creates no conflict

11/19

A few attempts

Attempt 1:
® pick the interval with the earliest starting time that creates no conflict
® no, previous example

Attempt 2:

® pick the shortest interval that creates no conflict

® no, for example

Attempt 3:

® pick the interval with the fewest overlaps that creates no conflict

® no, for example — =

11/19

A few attempts

Attempt 1:
® pick the interval with the earliest starting time that creates no conflict
® no, previous example

Attempt 2:

® pick the shortest interval that creates no conflict

® no, for example

Attempt 3:

® pick the interval with the fewest overlaps that creates no conflict

® no, for example — =

Attempt 4:

® pick the interval with the earliest finish time, that creates no conflict

11/19

An O(nlog(n)) implementation

Greedy(I = [I1,...,1,)])
T]
sort I by non-decreasing finish time
for k=1,...,ndo
if Iy, does not overlap the last entry in T
append I to T

Ol W

12 /19

Correctness: greedy is optimal

Let

T = [x1,...,xp| be the intervals chosen by algorithm,
S = [y1,...,Yq) be any choice without overlaps,

both sorted by increasing finish time

want to prove p > q

Proof (again, by an exchange argument)

by induction: for k =0,...,¢, p > k and [Z1,** , Tk, Yk+1,*** » Yq) has no overlap
and is sorted by increasing finish time

OK for k = 0, so we suppose true for some k < ¢, and prove for k + 1
since [z1,..., %k, Yk+1] is satisfiable, the algorithm didn’t stop at ;. So p > k + 1.

by definition of xj1, finish(zgy1) < finish(yk11). So we can replace ygy1 by xp41 and
we get 1, , ki1, Yk+2, -, Yq|, which is still satisfiable and sorted by increasing
finish time

13/ 19

Interval coloring

14 /19

The problem

Input:
e n intervals Iy = [s1, fi], ..., In = [Sn, [n] start time, finish time
® also write s; = start(I;), f; = finish(I})

15/ 19

The problem

Input:
e n intervals Iy = [s1, fi], ..., In = [Sn, [n]
® also write s; = start(I;), f; = finish(I;)

Output:
® assignment of colors to each interval
® overlapping intervals get different colors

® minimize the number of colors used overall

Remarks:
® another version: finding classrooms for lectures
® colors <» numbers 1,2, ...

* finish(I;) = start(I}) not an overlap

start time, finish time

15/ 19

A few attempts

Available colors:

Attempt 1:
® sort intervals by non-decreasing finish times

e for j =1,...,n, use the first possible color for I; (no same-color overlap with
Ila s 7Ij71)

[1]
I

[]
[]

16 /19

A few attempts

Available colors:

Attempt 1:
® sort intervals by non-decreasing finish times
e for j =1,...,n, use the first possible color for I; (no same-color overlap with
Li,....I—1)

[]
]
[]
1]

16 /19

A few attempts

Available colors:

Attempt 1:
® sort intervals by non-decreasing finish times
e for j =1,...,n, use the first possible color for I; (no same-color overlap with
Ila s 7Ij71)
[]
[]
[]

[]

16 /19

A few attempts

Available colors:

Attempt 1:
® sort intervals by non-decreasing finish times
e for j =1,...,n, use the first possible color for I; (no same-color overlap with
Ila s 71_7'71)
[]
[]
[]

[]

® does not work

16 /19

A few attempts

Available colors:

Attempt 2:
® sort intervals from shortest to longest

e for j =1,...,n, use the first possible color for I; (no same-color overlap with
Ila s 7Ij71)

[1]
I

[]
[]

17 /19

A few attempts

Available colors:

Attempt 2:
® sort intervals from shortest to longest
e for j =1,...,n, use the first possible color for I; (no same-color overlap with
Li,....I—1)

[]
]
[]
1]

17 /19

A few attempts

Available colors:

Attempt 2:
® sort intervals from shortest to longest
e for j =1,...,n, use the first possible color for I; (no same-color overlap with
Ila s 7Ij71)
[]
[]
[]

[]

17 /19

A few attempts

Available colors:

Attempt 2:
® sort intervals from shortest to longest
e for j =1,...,n, use the first possible color for I; (no same-color overlap with
Ila s 7Ij71)
[]
[]
[]

[]

® does not work

17 /19

A few attempts

Available colors:

Attempt 3:
® sort intervals by non-decreasing start times

e for j =1,...,n, use the first possible color for /; (no same-color overlap with
I,... ,Ij_l)

[]
I

L]
[]

18/ 19

A few attempts

Available colors:

Attempt 3:
® sort intervals by non-decreasing start times

e for j =1,...,n, use the first possible color for /; (no same-color overlap with
I,... ,Ij_l)

]
[]
1]

18/ 19

A few attempts

Available colors:

Attempt 3:
® sort intervals by non-decreasing start times
e for j =1,...,n, use the first possible color for /; (no same-color overlap with
I,... ,Ij_l)
[]
1]
[]

]

18/ 19

A few attempts

Available colors:

Attempt 3:
® sort intervals by non-decreasing start times
e for j =1,...,n, use the first possible color for /; (no same-color overlap with
I,... ,Ij_l)
[]
1]
[]

]

® maybe, needs proof

18/ 19

Correctness of the third attempt

Suppose the output uses k colors. Then, we cannot use fewer.

19/19

Correctness of the third attempt

Suppose the output uses k colors. Then, we cannot use fewer.

Proof
® suppose we color I; with color k
® so I; overlaps with £ — 1 intervals, say I, ..., s, , seen previously

esoforall j=1,....k -1, sq; < 8t < fa,
® 3o at time s¢, we can’t do with less than k& colors

* O(nlog(n) + nk) easy. Give a ®(nlog(n)) algorithm

® write an exchange-based proof

19/19

