CS 341: Algorithms

Lecture 6: Greedy algorithms, continued

Eric Schost

based on lecture notes by many other CS341 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Fall 2024

1/14

Minimizing lateness

2/14

The problem

Input:
® jobs Ji,...,J, with processing times t(1),...,t(n) and deadlines d(1),...,d(n)

® can only do one thing at a time

3/14

The problem

Input:
® jobs Ji,...,J, with processing times ¢(1),...,¢t(n) and deadlines d(1),...,d(n)

® can only do one thing at a time

Output:

® a scheduling of the jobs which minimizes maximal lateness
® job J; starts at time s(2) (TBD) and finishes at f(2) = s(¢) 4 (%)
o if f(i) > d(7), lateness £(¢) = f(i) — d(2), otherwise 0

® maximal lateness = max; £(2)

3/14

Example: 3 jobs

® prepare my slides: need t(1) = 4 hours, deadline d(1) = 2 hours
® write solutions to assignments: need t(2) = 6 hours, deadline d(2) = 1 hour
® bake a panettone: need ¢(3) = 10 hours, deadline d(3) = 24 hours

4/14

Example: 3 jobs

® prepare my slides: need t(1) = 4 hours, deadline d(1) = 2 hours
® write solutions to assignments: need t(2) = 6 hours, deadline d(2) = 1 hour
® bake a panettone: need t(3) = 10 hours, deadline d(3) = 24 hours

F]:EE—

® 1, then 2, then 3: latenesses [2,9, 0]
® 2, then 1, then 3: latenesses [8,5,0] (optimal)

4/14

No breaks

Observation:

® if a scheduling has idle time, we can improve it by removing the breaks

| [
I N E—

® so the optimal has no idle time, and is given by a permutation of [1,...,n]

5/14

A few attempts

Attempt 1:
® do short jobs first

6/14

A few attempts

Attempt 1:
® do short jobs first
® no, last example

6/14

A few attempts

Attempt 1:
® do short jobs first
® no, last example

Attempt 2:
¢ do jobs with little slack first slack = d(i) — t(7)

6/14

A few attempts

Attempt 1:
® do short jobs first
® no, last example

Attempt 2:
¢ do jobs with little slack first slack = d(i) — t(7)
® no

take (1) = 8, d(1) =10s0 s(1) =2 and t(1) = 2, d(2) = 5s0 s(2) =3

6/14

A few attempts

Attempt 1:
® do short jobs first
® no, last example

Attempt 2:
® do jobs with little slack first

® no

slack = d(i) — t(7)

take (1) = 8, d(1) =10s0 s(1) =2 and t(1) = 2, d(2) = 5s0 s(2) =3

6/14

A few attempts

Attempt 1:
® do short jobs first
® no, last example

Attempt 2:
¢ do jobs with little slack first slack = d(i) — t(7)
® no

take (1) = 8, d(1) =10s0 s(1) =2 and t(1) = 2, d(2) = 5s0 s(2) =3

Attempt 3:
® do jobs in non-decreasing deadline order

6/14

Non-uniqueness
Observation:
e if d(i) = d(j), the orderings [...,%,7,...] and [...,J,%,...] have the same
max-lateness (because the second job is the latest)

7/14

Non-uniqueness

Observation:
e if d(i) = d(j), the orderings [...,%,7,...] and [...,J,%,...] have the same
max-lateness (because the second job is the latest)

I /A N A —

® 5o all orderings in non-decreasing deadline order have the same max-lateness

7/14

Non-uniqueness
Observation:
e if d(i) = d(j), the orderings [...,%,7,...] and [..., J,%,...] have the same
max-lateness (because the second job is the latest)

® 50 all orderings in non-decreasing deadline order have the same max-lateness

Definition:
e take a permutation L = [ey,...,e,] of [1,...,n]
® inversion: a pair (4, j) with ¢ < j and d(e;) > d(e;)
(= an inversion in [d(e1),...,d(e,)] in the sense of lecture 3)

® no inversion <= L in non-decreasing deadline order

7/14

Correctness: exchange argument

e let L =[ey,...,e,] be any permutation of [1,...,n]
® suppose that L is not in non-decreasing order of deadlines

* want: max_lateness(L) > max_lateness(Lgreedy)

8/14

Correctness: exchange argument

let L =[ey,...,e,] be any permutation of [1,...,n]

® suppose that L is not in non-decreasing order of deadlines
* want: max_lateness(L) > max_lateness(Lgreedy)
there exists 7 such that d(e;) > d(e;t1).

® now, swap e; and e;; to get a permutation L’. What about max lateness(L’)?

8/14

Correctness: exchange argument

e let L =[ey,...,e,] be any permutation of [1,...,n]

® suppose that L is not in non-decreasing order of deadlines

* want: max_lateness(L) > max_lateness(Lgreedy)

® there exists ¢ such that d(e;) > d(e;+1).

® now, swap e; and e;; to get a permutation L’. What about max lateness(L’)?

e the lateness of e;41 cannot increase (because we do e;41 earlier than before), so at
most max_lateness(L)

® the new lateness of ¢; is at most the old lateness of e;11, so at most max_lateness(L)

|
| € €ifr1 |]
| [eir] [e; []
d(ei+1) d(e;)

8/14

Correctness: exchange argument

e let L =[ey,...,e,] be any permutation of [1,...,n]

® suppose that L is not in non-decreasing order of deadlines

* want: max_lateness(L) > max_lateness(Lgreedy)

e there exists ¢ such that d(e;) > d(e;4+1).

® now, swap e; and e;; to get a permutation L’. What about max lateness(L’)?

e the lateness of e;41 cannot increase (because we do e;41 earlier than before), so at
most max_lateness(L)

® the new lateness of ¢; is at most the old lateness of e;11, so at most max_lateness(L)

* nothing else changes, so max_lateness(L’) < max_lateness(L)

8/14

Correctness: exchange argument

e let L =[ey,...,e,] be any permutation of [1,...,n]

® suppose that L is not in non-decreasing order of deadlines

* want: max_lateness(L) > max_lateness(Lgreedy)

e there exists ¢ such that d(e;) > d(e;4+1).

® now, swap e; and e;; to get a permutation L’. What about max lateness(L’)?

e the lateness of e;41 cannot increase (because we do e;41 earlier than before), so at
most max_lateness(L)

® the new lateness of ¢; is at most the old lateness of e;11, so at most max_lateness(L)
* nothing else changes, so max_lateness(L’) < max_lateness(L)
® we removed an inversion

® keep going: after at most n(n — 1)/2 iterations, we have L4 with no inversion and
such that max_lateness(Lorq) < max_lateness(L)

* we saw that max_lateness(Lorq) = max_lateness(Lgreedy)

8/14

Fractional knapsack

9/14

The problem

Input:
® items Iq,...,I, with weights w1, ..., w, and positive values v1,...,v,
> > g ’ 9 p

® a capacity W

Output:
® fractions £ =e,...,e, such that
e 0<ej<1forally
® cqwy + - +epw, < W
® cyv1 + - + e, v, maximal

Example:
® wp = 10,’01 = 60, Wwo = 30,’02 = 90, w3 = 20,’03 = 100
e W =50

10/14

The problem

Input:

® items I1,..., I, with weights wq,...,w, and positive values vy,...

® a capacity W

Output:

¢ fractions F =e,...,e, such that
e 0<ej<1forally
® cqwy + - +epw, < W
® cyv1 + - + e, v, maximal

Example:
® wp = 10,’01 = 60, Wwo = 30,’02 = 90, w3 = 20,’03 = 100
e W =50

e optimal is e; = 1, e2 = 2/3, e3 = 1, total value 220

s Un

10/14

The problem

Input:
® items Iq,...,I, with weights w1, ..., w, and positive values v1,...,v,
> > g ’ s p

® a capacity W

Output:
¢ fractions F =e,...,e, such that
e 0<ej<1forally
® cqwy + - +epw, < W
® cyv1 + - + e, v, maximal
Remark:
® (/l-version: e; € {0,1} for all j

® dynamic programming

10/14

The knapsack should be full

Remark:
o if Y, w; < W, just take all ; =1

® so assume y , w; > W

11/14

The knapsack should be full

Remark:
o if Y, w; < W, just take all ; =1

® so assume y , w; > W

Observation:
® suppose we have an assignment with >, e;w; < W
® then some e; must be less than 1

® so we can increase the value by increasing this e;

11/14

The knapsack should be full

Remark:
o if Y, w; < W, just take all ; =1

® so assume y , w; > W

Observation:
® suppose we have an assignment with >, e;w; < W
® then some e; must be less than 1

® so we can increase the value by increasing this e;

Consequence:

® it is enough to consider assignments with >, e;w; = W

11/14

A few attempts

Attempt 1:

® pack with items in decreasing value v;

12/14

A few attempts

Attempt 1:
® pack with items in decreasing value v;

® no, previous example (we get [0, 1, 1] with total value 190)

12 /14

A few attempts

Attempt 1:
® pack with items in decreasing value v;

® no, previous example (we get [0, 1, 1] with total value 190)

Attempt 2:

® pack with items in increasing weight w;

12/14

A few attempts

Attempt 1:
® pack with items in decreasing value v;

® no, previous example (we get [0, 1, 1] with total value 190)

Attempt 2:
® pack with items in increasing weight w;
® no: W =10, w; = 10,v1 = 100, wy = 5,v3 = 1

12/14

A few attempts

Attempt 1:
® pack with items in decreasing value v;

® no, previous example (we get [0, 1, 1] with total value 190)

Attempt 2:
® pack with items in increasing weight w;
® no: W =10, wy = 10,v; = 100, wgy = 5,v3 = 1

Attempt 3:
® pack with items in non-increasing “value per kilo” v; /w;
e first example [6, 3, 5], second example [10,1/5]

12/14

Pseudo-code

GreedyKnapsack (v, w, W)
1 E +|0,...,0]

2 sort items by non-increasing order of v; /w;
3 for k=1,...,ndo

4. if wp < W then

5. E[k] + 1

6 W+ W —wy

7 else

8 E[k] + W/wj,

9

return

Remark: output is S = [1,...,1,¢eg,0,...,0]
Runtime: O(nlog(n))

13/14

Correctness: exchange argument

® let E = [e1,...,ey]| be the output, with) e;w; = W
® let S =[s1,..., S, be any assignment, with > s,w; = W
¢ assume that S # E, want value(E) > value(S)

14 /14

Correctness: exchange argument

e let £ = [e1,...,e,] be the output, with > e;w; = W

® let S =s1,...,5,) be any assignment, with > s,w; = W
¢ assume that S # E, want value(E) > value(S)

® let ¢ be the first index with e; # s;

e oreedy strategy: e; > s;

® because their weights are the same, there is j > ¢ with s; > e;

14 /14

Correctness: exchange argument

e let £ = [e1,...,e,] be the output, with > e;w; = W

® let S =s1,...,5,) be any assignment, with > s,w; = W

¢ assume that S # E, want value(E) > value(S)

® let ¢ be the first index with e; # s;

e oreedy strategy: e; > s;

® because their weights are the same, there is j > ¢ with s; > e;

* set s, = s; + a/w; and .s;- = sj — a/w;j, for o« TBD > 0, all other s}, = s,

® in any case, Y s,w; = W and value(S’) > value(S)

14 /14

Correctness: exchange argument

e let £ = [e1,...,e,] be the output, with > e;w; = W

® let S =s1,...,5,) be any assignment, with > s,w; = W

¢ assume that S # E, want value(E) > value(S)

® let ¢ be the first index with e; # s;

e oreedy strategy: e; > s;

® because their weights are the same, there is j > ¢ with s; > e;

* set s, = s; + a/w; and s; = sj — a/w;j, for o« TBD > 0, all other s}, = s,
® in any case, y_ s,w; = W and value(S’) > value(S)

® choose the first a such that either s = e; or s’ = e;
o = min(wi(ei — Si), U)j(Sj — ej))

e we found S’ with one more common entry with F, and value(S’) > value(S)
e if $' £ E, repeat, ..., until " = E
14/14

