CS 341: Algorithms

Lecture 7: Dynamic programming

Eric Schost

based on lecture notes by many other CS341 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Fall 2024

1/18

Goals

This module: the dynamic programming paradigm through examples

¢ weighted interval scheduling, knapsack, longest increasing subsequence, longest
common subsequence, etc

Computational model:
e word RAM

e assume all weights, values, capacities, deadlines, etc, fit in a word

What about the name?
® programming as in decision making

® dynamic because it sounds cool.

2/18

Warmup example: Fibonacci numbers

3/18

A slow recursive algorithm

Def: Fibonacci numbers
e [p=0,F1=1
° n-1+ Fpo forn >2

n —

Fib(n)
1. if n =0 return 0
2. if n=1return 1

3. return Fib(n — 1) 4+ Fib(n — 2)

Assuming we count additions at unit cost, runtime is
TO)=T(1)=0, T(n)=Tn—1)+T(n—2)+1

This gives T(n) = F(n + 1) — 1,50 T(n) € O(¢"), ¢ = (1+/5)/2.
4/18

A better algorithm

Observations
® to compute F,, we need the values of Fy,..., F,_1

® the algorithm recomputes them many, many times

5/18

A better algorithm
Observations

® to compute F,, we need the values of Fy,..., F,_1

® the algorithm recomputes them many, many times

Improved recursive algorithm

let T =10,1,e,0,...] be a global array
Fib(n)

1. if Tnj=-e

2. T[n] = Fib(n — 1) + Fib(n — 2)
3. return T'[n)

5/18

A better algorithm

Observations

® to compute F,, we need the values of Fy,..., F,_1

® the algorithm recomputes them many, many times

Iterative version

Fib(n)

1. let T=10,1,0,0,...]

2. fori=2,...,n

3. T =T —1]4+T[i — 2]
4. return T'[n)

5/18

A better algorithm

Observations
® to compute F},, we need the values of Fy, ..., F,_1

® the algorithm recomputes them many, many times

Iterative version (enhanced, not always feasible)

Fib(n)

1. (u,v) + (0,1)

2 fori=2,...,n

3. (u,v) < (v,u+v)
4 return v

5/18

A better algorithm

Observations
® to compute F,, we need the values of Fy,..., F,_1

® the algorithm recomputes them many, many times

Iterative version (enhanced, not always feasible)

Fib(n)

1. (u,v) « (0,1)

2 fori=2,...,n

3. (u,v) < (v,u+v)
4 return v

All these improved versions use ©(n) additions

Main feature: solve “subproblems” bottom up, and store solutions if needed.

5/18

Dynamic programming

Key features
® solve problems through recursion
¢ use a small (polynomial) number of nested subproblems
® may have to store results for all subproblems

® can often be turned into one (or more) loops

Dynamic programming vs divide-and-conquer
® dynamic programming usually deals with all input sizes 1,...,n
e DAC may not solve “subproblems”

e DAC algorithms not always easy to rewrite iteratively

6/18

Recipe

® |dentify subproblems and (typically) store their solutions in an array.
Need to know:
® dimensions of the array
® what precisely the array stores
® where the answer will be found

Establish recurrence

® how do small subproblems contribute to the solution of a larger one?

Find the base case(s)

Specify the order of computation

Recovery of the solution

® traceback strategy to determine the final solution

7/18

Weighted interval scheduling

8/18

The Problem

Input:
e n intervals Iy = [s1, fi],- -+, In = [Sn, fn] start time, finish time

® cach interval has a weight w;

Output:
® a choice T of intervals that do not overlap and maximizes), w;

® greedy algorithm in the case w; =1

Example: A car rental company has the following requests for a given day:
o [, = [8] wy, =6

o [, = [2,4],w2—2
o I3_[57]7w3
.I4—[7,],w4—2

Answer is T = [[1], W =6
9/18

Sketch of the algorithm

Basic idea: either we choose I,, or not.
¢ then the optimum O(I3,...,I,) is the max of two values:

® wy, +OImyy--.,1Im,), if we choose I, where I, ..., I, are the intervals that do
not overlap with I,

e O(I,...,I,_1), if we don’t choose I,

10/ 18

Sketch of the algorithm

Basic idea: either we choose I,, or not.
¢ then the optimum O(I3,...,I,) is the max of two values:

® wy, +OImyy--.,1Im,), if we choose I, where I, ..., I, are the intervals that do
not overlap with I,

e O(I,...,I,_1), if we don’t choose I,

In general, we don’t know what I, ..., I, look like.
Goal:
e find a way to ensure that Ip,,,..., I, are of the form Iy,..., I, for some s <n

(and so on for all indices < n)

® then it suffices to optimize over all I1,...,I;, j=1,...,n

10/ 18

The indices p;

Assume I, ..., I, sorted by increasing end time: f; < f;11

Claim: for all j, the set of intervals I, < I; that do not overlap I; is of the form
I,..., Iy, for some 0 < p; < j (p; = 0 if no such interval)

11/18

The indices p;

Assume I, ..., I, sorted by increasing end time: f; < f;11

Claim: for all j, the set of intervals I, < I; that do not overlap I; is of the form
I,..., Iy, for some 0 < p; < j (p; = 0 if no such interval)

The algorithm will need the p;’s.
e for a given j, find where s; would be in [f1,..., fy]
® precisely: p; is the last index ¢ such that f; <s;
® binary search, so O(nlog(n)) total.

Note: still OK if repeated f;’s

11/18

Main procedure

Definition: M [j] is the maximal weight we can get with intervals Iy,...,I;

Recurrence: M[0] = 0 and for j > 1

M][j] = max(M[j — 1], M[p;] + w;)

Runtime: ©(nlog(n)) (sorting, p;’s) and @(n) (finding the M[j]’s)

recover the optimum set, not only Mn], for extra O(n)

12/18

0/1 knapsack

13/18

The Problem

Input:
® items 1,...,n with weights w1, ..., w, and values vy, ..., v,
® a capacity W

Output:
e a choice of items S C {1,...,n}
® that satisfies the constraint) ;g w; < W
® and maximizes the value ;- qv;

14/18

The Problem

Input:

® items 1,...,n with weights wq, ..., w, and values vy, ...

® a capacity W

Output:
e a choice of items S C {1,...,n}
® that satisfies the constraint) ;g w; < W
® and maximizes the value ;- qv;
Example:
° wy =3, wy =4, w3 =6,wy =5
°* vy =213=3,v3=1,14=25
e W =8
¢ optimum S = {1,4} with weight 8 and value 7

» Un

14/18

The Problem

Input:
® items 1,...,n with weights w1, ..., w, and values vy, ..., v,
® a capacity W

Output:
e a choice of items S C {1,...,n}
® that satisfies the constraint) ;g w; < W
® and maximizes the value ;- qv;
Example:
° wy =3, wy =4, w3 =6,wy =5
°* vy =213=3,v3=1,14=25

e W =38
¢ optimum S = {1,4} with weight 8 and value 7
See also:

e fractional knapsack (items can be divided), solved with a greedy algorithm

14/18

Setting up the recurrence

Set O[w, ¢] := maximum value achievable using a knapsack of capacity w, items1,...,:

Want: O[W, n]

Basic idea: either we choose item n or not.
® then the optimum O[W, n] is the max of two values:
* v, + O[W — wyp,n — 1], if we choose n (requires w, < W)
e O[W,n — 1], if we don’t choose n

Initial conditions
® 0[0,i] = 0 for any i
® O[w,0] =0 for any w

15/ 18

Algorithm

01KnapSack(vy, ..., v, w1, ..., wy, W)
initialize an array O[0..W,0..n]
with all 0[0, §] = 0 and all Ofw, 0] = 0
fori=1,...,n
forw=1,..., W
if w; > w
Olw,i] + Olw,i — 1]
else
Olw, i] < max(v; + Olw — w;, i — 1], Olw, i — 1])

e BRI A e o

Runtime O(nW).

16/ 18

Discussion

1. Runtime. This is called a pseudo-polynomial algorithm
¢ in our word RAM model, we have been assuming all v;’s, w;’s and W fit in a word
® so input size is O(n) words
® but the runtime also depends on the values of the inputs

01-knapsack is NP-complete, so we don’t really expect to do much better

2. Exercise

recover the optimum subset

1718

A related problem

Subset sum: given positive integers ay, ..., a, and integer K, find if there is S C {1,...,n}
with

Z a; — K

€S

Option 1: write a “new” algorithm
¢ very much like knapsack

¢ pseudo polynomial runtime ©(nk)

Option 2: use the knapsack algorithm with

® Wi,...,Wp =0a1,...,0p
® Vi, .., Up =Q1y...,0p
e W=K

18/ 18

