CS 341: Algorithms

Lecture 9: Dynamic programming, continued

Eric Schost

based on lecture notes by many other CS341 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Fall 2024

1/14

Maximum independent set in a tree

2/14

The problem

Input:

¢ a tree T' (connected undirected graph with no cycle) with n vertices

Output:
® 3 maximum cardinality independent set of vertices in T’
® a subset S of vertices is independent if there is no edge in 7' connecting two elements
of S
Remarks:
® in a general graph, INDEPENDENTSET is NP-complete
® ¢ priori not a rooted tree, but we can suppose we chose a root r

e vertices = {1,...,n}, each vertex stores a linked list of children

3/14

Setting up the recurrence
Case discussion: is the root in S or not?

If no:
® all its children can be in S
® so we look (recursively) at the children of the root

¢ taking independent sets in children gives an independent set in T’

T

4/14

Setting up the recurrence
Case discussion: is the root in S or not?

If yes:
® none of its children can be in S
® so we can look (recursively) at its grandchildren

¢ taking independent sets in grandchildren gives an independent set in T’

0

N

4/14

Setting up the recurrence
Finally

O(T) = max(1 + S0, Y o))

C grandchild of r C' child of r
Algorithm:
e level-order traversal, get an array V[0..h], V[i] =linked list of vertices at level 4
e for v in V]h], set Ofv] =1
e fori=h—1,...,0, for v in V[i], use the recurrence to get O[v]

(loop over children and grandchildren to get the sums)

4/14

Setting up the recurrence
Finally

O(T) = max(1 + > o), > o)

C grandchild of r C’ child of r

Runtime: proportional to

Z 1+ Z #children(v) + Z #grandchildren(v)

v vertex in T' v vertex in T' v vertex in T'

® second sum is number of vertices of level at least 1

® third sum is number of vertices of level at least 2
® so ©(n) altogether

find the independent set itself

4/14

Optimal binary search trees

5/14

The problem
Input:
® integers (or something else that can be ordered) 1,...,n

® probabilities of access p1,...,pn, withp1 +---+p, =1

Output:
¢ an optimal BST with keys 1,...,n
® optimal: minimizes) ;- ; p;depth(i) = expected number of tests for a search
(here, depths start at 1)

6/14

The problem

Input:
® integers (or something else that can be ordered) 1,...,n

® probabilities of access p1,...,pn, withp1 +---+p, =1

Output:
¢ an optimal BST with keys 1,...,n
® optimal: minimizes) ;- ; p;depth(i) = expected number of tests for a search
(here, depths start at 1)

Example: py = po =p3=ps =p5 =1/5

3 1
2 & ‘:;
4y
l.%+z-l-£_+1-3.::=lgl :‘_(m.nuur):z 6/14

The problem
Input:
® integers (or something else that can be ordered) 1,...,n

® probabilities of access p1,...,pn, withp1 +---+p, =1

Output:
¢ an optimal BST with keys 1,...,n
® optimal: minimizes) ;- ; p;depth(i) = expected number of tests for a search
(here, depths start at 1)

See also
e optimal static ordering for linked lists
® Huffman trees

both built using greedy algorithms

6/14

The problem

Input:
® integers (or something else that can be ordered) 1,...,n

® probabilities of access p1,...,pn, withp1 +---+p, =1

Output:
¢ an optimal BST with keys 1,...,n
® optimal: minimizes) ;- ; p;depth(i) = expected number of tests for a search
(here, depths start at 1)

Remark

e there are %H(Z):) binary search trees with n keys

® this is @(4"/n'®)

6/14

Setting up the recurrence

Definition for 4,j in {1,...,n}, we define M|, j] by
® Mli, j] = the minimal cost for items {7,...,j},if i <j
o Mli,j]=0forj<i

Want: M[1,n]

Recurrence

k—1 J

Mli,j) = min (Mli,k =11+ Y petpe+ Mk + 1,5+ > pe)

isk<) =i P=k+1

J
= in (M[i k= 1+ Mk +1,5]) + ;pg

check: gives M[i,i] = p;

7/14

Algorithm

Remark: to get Zg:ipg:
e compute S[¢{]=p1+---+pg for £ =1,...,n
® then p; +--- +p; = S[j] — S[i — 1], with S[0] =0

OptimalBST(p1,...,pn, S0, ..., 5n)

1. fori=1,...,n+1

2. Mi,i—1]«0

3. ford=0,...,n—-1 d=j—1

4. fori=1,...,.n—d

5. jd+i

6. M{i, j] < minj<p<;(M[i, k — 1]+ M[k + 1, 7]) + S[j] — S[i — 1]

Runtime O(n?3)

8/14

A faster algorithm

For all ¢, 7, let k; ; be the largest index that gives the min at Step 6.
Claim (difficult)

For all 4, j, with j >4, we have k; j_1 < ki j < kiy1,5
(root shifts left (right) if you add elements on the left (right))

OptimalBST(p1,...,pn, S0, ..., Sn)

if d =0 then range < {i} else range < {k; j_1,...,kit1,5}
Mli, j], kg < mingerange(M[i, k — 1] + M[k + 1, 5]) + S[j] = S[i — 1]

1. fori=1,....,.n+1

2. Mi,i—1]«0

3. ford=0,...,n—1 d=j—1
4. fori=1,...,n—d

5. j—d+i

6.

7.

9/14

Runtime, revisited

Work is proportional to

n—1n—d

o> (kiyrg—kiga+1)=> > (kiy1itd — kii—14a+1)

d=0 i=1

Conclusion: ©(n?)

n—1n—d
d=0 1=1
n—1n—d n-ln-d
<> 0D (kivviva —kiiciga) + 3 > 1
=3 d=0 i=1
n—1l n—1n—d
< (kbndrin —koa 1)+ > 31
d=0 d=0 i=1
< 2n?

10/ 14

Text segmentation

11/14

The problem

Input: a string, represented as an array A[l..n]

Output:
¢ true if we can segment of A into words from a given dictionary
® false otherwise

(we assume that we can test if A[i..j] is a word in O(1) using is_word][i..j])
Example: A=caramelow — true, with car a me low

Remark: there are 2"~ ways to segment A

12/14

Subproblems and their recurrence

Subproblems: can we split A[1..i] into words?

Definition: for i = 1,...,n, let s[i] be
* true if we can segment of A[l..i] into words
® false otherwise

we set s[0] = true
Recurrence: s[i] = or;';% (s[j] and is_word(A[j + 11]))

Algorithm could be written recursively, but we’ll focus on iterative version

13/14

A polynomial algorithm

IsSplittable(A[1..n])

1 s[0] + true

2 fori=1,...,ndo

3. sli] « false

4. for j=0,...,:—1do

5 s[i] < s[i] or (s[j] and is_-word(A[j + 1..i]))
6 return s[n|

Runtime: O(n?)

return a valid subdivision, if there is one

14/14

