CS 341: Algorithms

Lecture 11: Depth-first search

Éric Schost

based on lecture notes by many other CS341 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Fall 2024

Depth-first search

Going depth-first

The idea:

- travel as deep as possible, as long as you can
- when you can't go further, backtrack.

DFS implementations are based on stacks, either **implicitly** (recursion) or **explicitly** (as with queues for BFS).

Recursive algorithm

```
\begin{array}{ll} \textbf{explore}(v) \\ 1. & \textbf{visited}[v] = \textbf{true} \\ 2. & \textbf{for all } w \text{ neighbour of } v \textbf{ do} \\ 3. & \textbf{if visited}[w] = \textbf{false} \\ 4. & \textbf{explore}(w) \end{array}
```

Remark: can add parent array as in BFS

Basic properties

Claim ("white path lemma")

When we start exploring v, any w that can be connected to v by a path of **unvisited** vertices will be visited before **explore**(v) is finished.

Proof. Same as for BFS(s).

Claim

If w is visited during explore(v), there is a path $v \rightsquigarrow w$.

Proof. Same as for BFS(s).

Consequences

Shortest paths: no

Runtime: still O(n + m)

Connected components:

- let v_1, \ldots, v_k be the indices from which we enter **explore** in **DFS**
- then for all j, $explore(v_j)$ visits exactly the connected component of v_j
- so **DFS** gives a partition of G into rooted trees T_1, \ldots, T_k (**DFS forest**) (no common vertex, no connecting edge)

Ancestors and descendants

Definition. Suppose the DFS forest is T_1, \ldots, T_k and let u, v be two vertices

- u is an **ancestor** of v iff they are on the same T_i and u is on the path root $\rightsquigarrow v$
- v is a **descendant** of u iff u is an ancestor of v
- u = v is OK

Claim

All edges in G connect a vertex to one of its descendants or ancestors.

Proof. Let $\{v, w\}$ be an edge, and suppose we explore from v first.

Then when we explore from v, (v, w) is an unvisited path between v and w, so w will become a descendant of v (white path lemma)

Back edges

Definition.

• a **back edge** is an edge in G connecting an ancestor to a descendant, which is **not** a tree edge.

Back edges

Definition.

• a **back edge** is an edge in *G* connecting an ancestor to a descendant, which is **not** a tree edge.

Observation

All edges are either **tree edges** or **back edges** (previous slide).

Start and finish times

Set a global variable t to 1 initially, create two arrays start and finish, and change explore:

```
explore(v)
    visited[v] = \mathbf{true}
1.
   \mathsf{start}[v] = t
2.
   t++
3.
4.
    for all w neighbour of v do
           if visited[w] = false
5.
                explore(w)
6.
     finish[v] = t
7.
8.
       t++
```

Example

Observation

time intervals are either contained in one another, or disjoint

Proof: if u starts before v, then

- either u finishes before v starts (disjoint intervals)
- or u is still on the program stack when v starts, then v finishes before u does (inclusion)

Cut vertices

Biconnectivity

Definition: G = (V, E) biconnected if

- $\bullet~G$ is connected
- $\bullet~G$ stays connected if we remove any vertex (and all edges that contain it)

Two biconnected graphs:

Cut vertices

Definition: for G connected, a vertex v in G is a **cut vertex** if removing v (and all edges that contain it) makes G disconnected. Also called **articulation point**.

biconnected \iff no cut vertex

Aside: the shape of a connected undirected graph

Call **biconnected component** a biconnected subgraph that is not contained in a larger one (two **edges** are in the same biconnected component iff there is a cycle that contains them)

Then G can be seen as a tree of alternating **biconnected components** and **cut vertices**

Remark: blue edges are cut edges (bridges): removing them makes the graph disconnected

Aside: the shape of a connected undirected graph

Call **biconnected component** a biconnected subgraph that is not contained in a larger one (two **edges** are in the same biconnected component iff there is a cycle that contains them)

Then G can be seen as a tree of alternating **biconnected components** and **cut vertices**

Finding the cut vertices (G connected)

Setup: we start from a **rooted DFS tree** *T*, knowing parent and level.

Warm-up

The root s is a cut vertex if and only if it has more than one child.

Proof.

- if s has one child, removing s leaves T connected. So s not a cut vertex.
- suppose s has subtrees $S_1, \ldots, S_k, k > 1$.

Key property: no edge connecting S_i to S_j for $i \neq j$. So removing *s* creates *k* connected components.

Finding the cut vertices (*G* connected)

Definition: for a vertex v, let

- $a(v) = \min\{\mathsf{level}[w], \{v, w\} \text{ edge}\}$
- $m(v) = \min\{a(w), w \text{ descendant of } v\}$

و(م)=) m (م)= 0

Using the values m(v)

Claim

For any v (except the root), v is a cut vertex if and only if it has a child w with $m(w) \ge |evel[v]|$.

Proof

- Take a child w of v, let T_w be the subtree at w. Let also T_v be the subtree at v.
- If m(w) < |evel[v]|, then there is an edge from T_w to a vertex above v. After removing v, T_w remains connected to the root.
- If $m(w) \ge \text{level}[v]$, then all edges originating from T_w end in T_v .

Proof: any edge originating from a vertex x in T_w ends at a level at least |evel[v]|, and connects x to one of its ancestors or descendants (key property)

So after removing v, T_w is disconnected from the root (which is still here)

Runtime

Observation:

• if v has children w_1, \ldots, w_k , then $m(v) = \min\{a(v), m(w_1), \ldots, m(w_k)\}$

Consequence:

- DFS tree in O(m)
- computing a(v) is $O(d_v)$

$$d_v = \text{degree of } v$$

- knowing all $m(w_1), \ldots, m(w_k)$, we get m(v) in $O(d_v)$
- testing the cut-vertex condition at v is $O(d_v)$
- total O(m)

Exercise

- write the pseudo-code
- find the bridges