
CS 341: Algorithms

Lecture 11: Depth-first search

Éric Schost
based on lecture notes by many other CS341 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Fall 2024

1 / 18



Depth-first search

2 / 18



Going depth-first
The idea:

• travel as deep as possible, as long as you can
• when you can’t go further, backtrack.

DFS implementations are based on stacks, either implicitly (recursion) or explicitly (as with
queues for BFS).

3 / 18



Recursive algorithm

DFS(G)
G = (V, E): a graph with n vertices, given by adjacency lists
1. let visited be an array of size n, with all entries set to false
2. for all v in V
3. if visited[v] is false
4. explore(v)

explore(v)
1. visited[v] = true
2. for all w neighbour of v do
3. if visited[w] = false
4. explore(w)

Remark: can add parent array as in BFS

4 / 18



Basic properties

Claim (“white path lemma”)

When we start exploring v, any w that can be connected to v by a path of unvisited
vertices will be visited before explore(v) is finished.

Proof. Same as for BFS(s).

Claim

If w is visited during explore(v), there is a path v ; w.

Proof. Same as for BFS(s).

5 / 18



Consequences

Shortest paths: no

Runtime: still O(n + m)

Connected components:
• let v1, . . . , vk be the indices from which we enter explore in DFS
• then for all j, explore(vj) visits exactly the connected component of vj

• so DFS gives a partition of G into rooted trees T1, . . . , Tk (DFS forest)
(no common vertex, no connecting edge)

6 / 18



Ancestors and descendants

Definition. Suppose the DFS forest is T1, . . . , Tk and let u, v be two vertices
• u is an ancestor of v iff they are on the same Ti and u is on the path root ; v

• v is a descendant of u iff u is an ancestor of v

• u = v is OK

Claim

All edges in G connect a vertex to one of its descendants or ancestors.

Proof. Let {v, w} be an edge, and suppose we explore from v first.

Then when we explore from v, (v, w) is an unvisited path between v and w, so w will
become a descendant of v (white path lemma)

7 / 18



Back edges
Definition.

• a back edge is an edge in G connecting an ancestor to a descendant, which is not a
tree edge.

s

Observation

All edges are either tree edges or back edges (previous slide).

8 / 18



Back edges
Definition.

• a back edge is an edge in G connecting an ancestor to a descendant, which is not a
tree edge.

s

Observation

All edges are either tree edges or back edges (previous slide).

8 / 18



Start and finish times

Set a global variable t to 1 initially, create two arrays start and finish, and change explore:

explore(v)
1. visited[v] = true
2. start[v] = t
3. t++
4. for all w neighbour of v do
5. if visited[w] = false
6. explore(w)
7. finish[v] = t
8. t++

9 / 18



Example
s [1, 8]

[2, 7]

[3, 4]

[5, 6]

Observation

time intervals are either contained in one another, or disjoint

Proof: if u starts before v, then
• either u finishes before v starts (disjoint intervals)
• or u is still on the program stack when v starts, then v finishes before u does

(inclusion) 10 / 18



Cut vertices

11 / 18



Biconnectivity

Definition: G = (V, E) biconnected if
• G is connected
• G stays connected if we remove any vertex (and all edges that contain it)

Two biconnected graphs:

12 / 18



Cut vertices
Definition: for G connected, a vertex v in G is a cut vertex if removing v (and all edges
that contain it) makes G disconnected. Also called articulation point.

biconnected ⇐⇒ no cut vertex

13 / 18



Aside: the shape of a connected undirected graph
Call biconnected component a biconnected subgraph that is not contained in a larger one
(two edges are in the same biconnected component iff there is a cycle that contains them)

Then G can be seen as a tree of alternating biconnected components and cut vertices

Remark: blue edges are cut edges (bridges): removing them makes the graph disconnected

14 / 18



Aside: the shape of a connected undirected graph
Call biconnected component a biconnected subgraph that is not contained in a larger one
(two edges are in the same biconnected component iff there is a cycle that contains them)

Then G can be seen as a tree of alternating biconnected components and cut vertices

14 / 18



Finding the cut vertices (G connected)

Setup: we start from a rooted DFS tree T , knowing parent and level.

Warm-up

The root s is a cut vertex if and only if it has more than one child.

Proof.
• if s has one child, removing s leaves T connected. So s not a cut vertex.

• suppose s has subtrees S1, . . . , Sk, k > 1.

Key property: no edge connecting Si to Sj for i ̸= j. So removing s creates k
connected components.

15 / 18



Finding the cut vertices (G connected)
Definition: for a vertex v, let

• a(v) = min{level[w], {v, w} edge}

• m(v) = min{a(w), w descendant of v} (v is a descendant of v)

16 / 18



Using the values m(v)
Claim

For any v (except the root), v is a cut vertex if and only if it has a child w with
m(w) ≥ level[v].

Proof
• Take a child w of v, let Tw be the subtree at w. Let also Tv be the subtree at v.

• If m(w) < level[v], then there is an edge from Tw to a vertex above v. After removing
v, Tw remains connected to the root.

• If m(w) ≥ level[v], then all edges originating from Tw end in Tv.

Proof: any edge originating from a vertex x in Tw ends at a level at least level[v], and
connects x to one of its ancestors or descendants (key property)

So after removing v, Tw is disconnected from the root (which is still here)
17 / 18



Runtime
Observation:

• if v has children w1, . . . , wk, then m(v) = min{a(v), m(w1), . . . , m(wk)}

Consequence:
• DFS tree in O(m)
• computing a(v) is O(dv) dv = degree of v

• knowing all m(w1), . . . , m(wk), we get m(v) in O(dv)
• testing the cut-vertex condition at v is O(dv)
• total O(m)

Exercise

• write the pseudo-code
• find the bridges

18 / 18


