
CS 341: Algorithms

Lecture 12: Directed graphs

Éric Schost
based on lecture notes by many other CS341 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Fall 2024

1 / 15



Directed graphs

2 / 15



Directed graphs basics

Definition:
• G = (V, E) as in the undirected case, with the difference that edges are (directed)

pairs (v, w)
• edges also called arcs
• we allow loops, with v = w

• walks, paths and cycles as before; here, cycles have at least one edge
• a directed acyclic graph (DAG) is a directed graph with no cycle

3 / 15



BFS and DFS for directed graphs
The algorithms work without any modification.
BFS: still get shortest paths
DFS: still have

• a partition of V into vertex-disjoint trees T1, . . . , Tk

• white path lemma (when we start exploring a vertex v, any w with an unvisited path
v ; w becomes a descendant of v)

• properties of start and finish times
New for DFS:

• there can exist edges connecting the trees Ti

T1

T1 T2

4 / 15



Classification of edges
Suppose we have a DFS forest. Edges of G are one of the following:

• tree edges
• back edges: from descendant to ancestor
• forward edges: from ancestor to descendant (but not tree edge)
• cross edges: all others

back
forward
cross

(depends on the order of vertices we chose in the main DFS loop)
5 / 15



Classification of edges

explore(v)
1. visited[v] = true
2. start[v] = t, t++
3. for all w neighbour of v do
4. if visited[w] = false
5. explore(w) (v, w) tree edge
6. finish[v] = t, t++

If w was visited:
• if w not finished, (v, w) back edge
• else if start[v] < start[w] < finish[w], (v, w) forward edge
• else, start[w] < finish[w] < start[v], (v, w) cross edge

6 / 15



Testing acyclicity

Claim

G has a cycle if and only if there is a back edge in the DFS forest

Proof
• Suppose there is a back edge (v, w). Then v is a descendant of w, so there is a path

w ; v, and a cycle w ; v → w

• Suppose there is a cycle v1, . . . , vk, v1. Up to renumbering, assume we find v1 first in
the DFS.

Starting from v1, we will reach vk (white path lemma). We check the edge (vk, v1),
and v1 is not finished. So back edge.

Consequence: acyclicity test in O(n + m)

7 / 15



Topological ordering

Definition: Suppose G = (V, E) is a DAG. A topological order is an ordering < of V such
that for any edge (v, w), we have v < w.

Remark: exists a topological order iff G is a DAG.

8 / 15



From a DFS forest

[1, 2]

[3, 4] [1, 4]

[2, 3]

Observation:
• start times do not help
• finish times do, but we have to reverse their order

9 / 15



From a DFS forest

Claim

Assume G is a DAG. Suppose that V is ordered using the reverse of the finishing
times: v < w ⇐⇒ finish[w] < finish[v].

This is a topological order.

Proof. Have to prove: for any edge (v, w), finish[w] < finish[v].
• if we discover v before w, w will become a descendant of v (white path lemma), and

we finish exploring it before we finish v.

• if we discover w before v, because there is no path w ; v (G is a DAG), we will finish
w before we start v.

Consequence: topological order in O(n + m).

10 / 15



Testing strong connectivity

Definition. A directed graph G is strongly connected if for all v, w in G, there is a path
v ; w (and thus a path w ; v).

Algorithm:
• call explore twice, starting from a same vertex s

• edges reversed the second time

Correctness:
• first run tells whether for all v, there is a path s ; v

• second one tells whether for all v, there is a path s ; v in the reverse graph (which is
a path v ; s in G)

Consequence: test in O(n + m)

11 / 15



Structure of directed graphs

Definition: a strongly connected component of G is
• a subgraph of G

• which is strongly connected
• but not contained in a larger strongly connected subgraph of G.

Exercise

v and w are in the same strongly connected component if and only if there are paths
v ; w and w ; v.

Exercise

The vertices of strongly connected components form a partition of V .

12 / 15



Structure of directed graphs
A directed graph G can be seen as a DAG of disjoint strongly connected components.

13 / 15



Structure of directed graphs
A directed graph G can be seen as a DAG of disjoint strongly connected components.

13 / 15



Kosaraju’s algorithm for strongly connected components

Definition: for a directed graph G = (V, E), the reverse (or transpose) graph GT = (V, ET )
is the graph with same vertices, and reversed edges.

SCC(G)
1. run a DFS on G and record finish times
2. run a DFS on GT , with vertices ordered in decreasing finish time
3. return the trees in the DFS forest of GT

Complexity: O(n + m) (don’t forget the time to reverse G)

Exercise

check that the strongly connected components of G and GT are the same

14 / 15



The idea behind the algorithm

Claim

If S and T are two strongly connected components of G and there is an edge S → T ,
latest finish time in S > latest finish time in T

Proof:
• if we visit a vertex in S first, all vertices in T will be its descendants
• if we visit a vertex in T first, we won’t reach S before T is finished.

Consequence:
• start second run from the last-finished vertex s

• in GT , every vertex reachable from s is in the same strongly connected component
• continue

15 / 15


