CS 341: Algorithms

Lecture 12: Directed graphs

Eric Schost

based on lecture notes by many other CS341 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Fall 2024

1/15

Directed graphs

2/15

Directed graphs basics

Definition:
e G = (V,E) as in the undirected case, with the difference that edges are (directed)
pairs (v, w)
® edges also called arcs
® we allow loops, with v = w

® walks, paths and cycles as before; here, cycles have at least one edge

® a directed acyclic graph (DAG) is a directed graph with no cycle

3/15

BFS and DFS for directed graphs

The algorithms work without any modification.
BFS: still get shortest paths

DFS: still have
® a partition of V into vertex-disjoint trees 11, ..., T}
¢ white path lemma (when we start exploring a vertex v, any w with an unvisited path
v ~ w becomes a descendant of v)
® properties of start and finish times

New for DFS:
® there can exist edges connecting the trees T;

T1 T2

Ty
1/15

Classification of edges

Suppose we have a DFS forest. Edges of G are one of the following:
® tree edges

back edges: from descendant to ancestor

forward edges: from ancestor to descendant (but not tree edge)

cross edges: all others

back

/\)\ /\L forward
Cross
%

(depends on the order of vertices we chose in the main DFS loop)

5/15

Classification of edges

explore(v)
visited[v] = true
start[v] = ¢, t++
for all w neighbour of v do
if visited[w] = false
explore(w) (v, w) tree edge
finish[v] = ¢, t++

A e

If w was visited:
e if w not finished, (v, w) back edge
e clse if start[v] < start[w] < finish[w], (v, w) forward edge
e clse, start[w] < finish[w] < start[v], (v, w) cross edge

6/15

Testing acyclicity

Claim

G has a cycle if and only if there is a back edge in the DFS forest

Proof

e Suppose there is a back edge (v, w). Then v is a descendant of w, so there is a path
w ~ v, and a cycle w ~ v — w

® Suppose there is a cycle v, ..., vg, v1. Up to renumbering, assume we find v; first in
the DFS.

Starting from v, we will reach v;, (white path lemma). We check the edge (vg,v1),
and v; is not finished. So back edge.

Consequence: acyclicity test in O(n + m)

7/15

Topological ordering

Definition: Suppose G = (V, E) is a DAG. A topological order is an ordering < of V' such
that for any edge (v, w), we have v < w.

wlh.s‘k Qgﬁs
2

/\(OIL. Jfo
@9@ i

Remark: exists a topological order iff G is a DAG.

8/15

From a DFS forest

Observation:
® start times do not help

¢ finish times do, but we have to reverse their order

9/15

From a DFS forest

Claim

Assume G is a DAG. Suppose that V is ordered using the reverse of the finishing
times: v < w <= finish{w] < finish[v].

This is a topological order.
Proof. Have to prove: for any edge (v, w), finish[w] < finish[v].

e if we discover v before w, w will become a descendant of v (white path lemma), and
we finish exploring it before we finish v.

e if we discover w before v, because there is no path w~» v (G is a DAG), we will finish

w before we start v.

Consequence: topological order in O(n + m).

10/ 15

Testing strong connectivity

Definition. A directed graph G is strongly connected if for all v,w in G, there is a path
v~ w (and thus a path w ~ v).
Algorithm:

e call explore twice, starting from a same vertex s

® edges reversed the second time

Correctness:
e first run tells whether for all v, there is a path s~ v

¢ second one tells whether for all v, there is a path s ~» v in the reverse graph (which is
a path v~ s in G)

Consequence: test in O(n + m)

11/15

Structure of directed graphs

Definition: a strongly connected component of G is
® 3 subgraph of G
® which is strongly connected

® but not contained in a larger strongly connected subgraph of G.

v and w are in the same strongly connected component if and only if there are paths
v~ w and w ~ v.

The vertices of strongly connected components form a partition of V.

12/15

Structure of directed graphs

A directed graph G can be seen as a DAG of disjoint strongly connected components.

()
./. ®
SN o ()

13/ 15

Structure of directed graphs

A directed graph G can be seen as a DAG of disjoint strongly connected components.

13/ 15

Kosaraju’s algorithm for strongly connected components

Definition: for a directed graph G = (V, E), the reverse (or transpose) graph GT = (V, ET)

is the graph with same vertices, and reversed edges.

SCC(G)
1. run a DFS on G and record finish times
2. run a DFS on G7T, with vertices ordered in decreasing finish time

3. return the trees in the DFS forest of GT

Complexity: O(n + m) (don’t forget the time to reverse G)
Exercise

check that the strongly connected components of G and GT are the same

14/15

The idea behind the algorithm

Claim

If S and T are two strongly connected components of G and there is an edge S — T,
latest finish time in S > latest finish time in T

Proof:
e if we visit a vertex in S first, all vertices in T will be its descendants

e if we visit a vertex in 7T first, we won’t reach .S before T is finished.

Consequence:
® start second run from the last-finished vertex s
e in GT, every vertex reachable from s is in the same strongly connected component

® continue

15/ 15

