CS 341: Algorithms

Lecture 14: Single-source shortest paths

Eric Schost

based on lecture notes by many other CS341 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Fall 2024

1/12

Conventions

Input:
® a directed graph G = (V, E)

¢ with weights w(e) on the edges
w(y) = weight of a path v = sum of the weights of its edges

® optional: no isolated vertices, with no incoming or outgoing edge m>n/2

Output:

¢ today: the shortest (=minimal weight) paths between a source s and all vertices

® next: shortest paths between all vertices

Remark: nothing faster known (to me) for single-source, single-destination

2/12

Remarks

1. shortest walks may not exist if there are negative length cycles

-5

2 1

0—>0—>0

3 3

some algorithms can deal with negative edges or detect negative cycles

Dijkstra’s algorithm needs positive weights

if negative cycles possible, shortest path (=simple walk) NP-complete

¢ if no negative cycle, shotest walk=shortest path

3/12

Remarks

2. if there exists a shortest path s ~» ¢, write d(s,t) for its weight
e called the distance from s to t (but we may not have §(s,t) = (¢, s))

e if there is no path s~ t, §(s,t) = c©

3. easy special case: G is a DAG

® topological sort the vertices vy < --- < v,
e DP algorithm to compute all distances d(s,v1),...,0(s,v;)

® Jinear runtime

4/12

Dijkstra’s algorithm
Assumption
All weights are non-negative
Idea of the algorithm:
e starting from s, grow a tree (S, 7T), together with the distances d(s,v) for v in S
at every step, add to S the remaining vertex v closest to s

[]
® no negative weight: this vertex is on an edge (u,v), uwin S, vin V — S
e if there is no such edge, we're done (all remaining vertices are unreachable)

S

both a greedy algorithm and a generalization of BF'S 5/12

Key property

Let (S,T) be a tree rooted at s and take an edge (u, v) such that
® yisin S,visin V-8
® §(s,u) + w(u,v) minimal among these edges
Then (s, u) + w(u,v) = d(s,v)
(and it is the minimum of all §(s,v) for v not in .S, but we don’t need this)

6/12

Key property
Claim

Let (S,T) be a tree rooted at s and take an edge (u,v) such that
® yisin S,visin V — 8
® §(s,u) + w(u,v) minimal among these edges
Then (s, u) + w(u,v) = d(s,v)
(and it is the minimum of all d(s,v) for v not in S, but we don’t need this)

Proof:

e take a path 7 : s~ v and let (z,y) be its first edge S -V — S

* w(y) =w(s~ x)+w(zr,y) +wly ~v) >d(s,z) +w(z,y)+0
so w(vy) > 6(s,u) + w(u,v) choice of u,v
but also d(s,u) + w(u,v) > (s, v) def of distance s — v
take shortest v: w(7y) = d(s,v) so 6(s,v) > d(s,u) + w(u,v) > d(s,v)

6/12

High-level view of the algorithm

Dijkstra(G, s)
1. S« {s}
2. while S # V do
3. choose (u,v) with w in S, v not in S and §(s, u) + w(u,v) minimal
(the min value gives d(s,v))
4. add v to §
5. if not such (u,v), stop
Correctness:

® we find §(s,v) for all v in §
e if S =1V at the end, OK
¢ if not, when we stop, the remaining vertices are unreachable

Data structure:
® how to find (u,v) efficiently?
® use a priority queue of vertices

7/12

The min-priority queue

Building P
e contains all vertices in V' — S (initially, all V)
® for v # s, we will maintain priority[v] = min,cg, (4v)e£(d(s, u) + w(u,v))
(with min(0) = oco)
® also store the vertex u that gives the min, if applicable

® need to be able to update priorities

Initialization:
® priority[s] =0
® priority[v] = oo for v # s

8/12

The min-priority queue
Updating P

e if v is the vertex with minimal priority, then
riority[v] = min priority[v’
priority[v] = min _ priority[v]
= min min 5(s,u) + w(u,v
v'eV-S ueS,(u,v’)EE(() ()
=d(s,v) (key property)

(once we get it out the min-queue, we store it in an array d[v])

9/12

The min-priority queue
Updating P
e if v is the vertex with minimal priority, then
riority[v] = min priority[v’
priority[v] = min _ priority[v]

= min min 5(s,u) + w(u,v
v'eV-S ueS,(u,v’)EE(() ()

=d(s,v) (key property)
(once we get it out the min-queue, we store it in an array d[v])

e then for all v/ remaining in P, we must set

iorit n_ . 6 ’
priority[v'] ueS+IJ,1(1£v')GE((s,u) +w(u,v"))

e if there is no edge (v,v"), priority[v'] unchanged

¢ else, the new priority is min(priority[v'], d[v] + w(v, V"))

9/12

Pseudo-code

Dijkstra(G, s)
P + heapify([s, 0, s, [v, 00, ®],5)
while P not empty do

[v,4,u] + remove_min(P)

dv] «+ ¢

parent[v] < u

for all edges (v,v') do

if d[v] + w(v,v") < priority[v] then
replace [v/, _,] by [v/,d[v] + w(v,v"),v] in P

S I e

Missing details:
¢ implement P as a heap
® use an array index to know where v’ is in P
® change priorities in P
® update index as needed

10/12

Example

11/12

Example

11/12

Example

11/12

Example

11/12

Example

11/12

Example

11/12

Example

11/12

Example

11/12

Example

11/12

Runtime

Priority queue
® binary heap implementation: O(log (n)) for remove-min and change priority

Total
¢ n remove min, m change priority, so total O((m + n) log(n))
® if no isolated vertex, n/2 < m, so total O(mlog(n))

Remark
® Fibonacci heaps:
® O(1) insert
® O(log(n)) amortized remove min
® O(1) amortized decrease priority

* total becomes O(m + nlog(n))

12/12

