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Goals

Next three lectures:

® basic results on flows and cuts

Ford-Fulkerson algorithm for flows

correctness via max flow = min cut

® some applications
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Flows

Setup.
® let G be a directed graph, with no isolated vertex (m > n/2), and let ¢ be a capacity
on the edges of G
- for all e, ¢(e) >0
- by default, c(e) is an integer
® we isolate two vertices in G, which will be called the source s and the sink ¢.
there is no edge going to s or from t.

® we want to send as much “flow” as possible (water in pipes, material on transport
networks, ...) while respecting certain rules.
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Flows

Definition: a flow is a function f of the edges that satisfies
e for any edge e, we have 0 < f(e) < c(e)

¢ the amount of flow that enters a vertex equals the amount of flow that goes out of it
(except at s and t)
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Flows

Definition: the value of a flow is the amount of flow that goes out of the source:

Val(f) = > fle).

(s,v) edge
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here, value is 3.

MaxFlow problem: find a flow with a maximal value.
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Producing bananas

We have banana factories Fy, Fa, F3 and grocery stores Sy, Ss.
® F; can produce up to f; tons of bananas,
® S; wants s; tons of bananas.

How to maximize production?
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Producing bananas

Example

We have banana factories Fy, Fa, F3 and grocery stores Sy, Ss.
® F; can produce up to f; tons of bananas,
® S; wants s; tons of bananas.

How to maximize production?

Compute the maximal flow in the following graph (the middle edges have large capacity,
such as f17f27 f3)
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Ford-Fulkerson’s algorithm
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Improving the value

we may have to decrease the flow through some edges.
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here, we are stuck if we only allow to increase all edges’ flow.
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Improving the value

we may have to decrease the flow through some edges.
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we improve the value to 4 by redirecting some flow that was going through the red edge.

amounts to sending one extra flow unit all along the colored path, taking the red edge
backward.
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The residual graph
The residual graph Gy shows all the ways to increase the value of the flow.
Definition
® vertices of Gy are those of G.
e forein F
e if f(e) < c(e), put e in edge(Gy) with capacity c(e) — f(e)
e if f(e) > 0, put reverse(e) in edge(G) with capacity f(e).
(edges of Gy show what modifications are possible)
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The residual graph
The residual graph Gy shows all the ways to increase the value of the flow.
Definition
® vertices of Gy are those of G.
e forein F
e if f(e) < c(e), put e in edge(Gy) with capacity c(e) — f(e)
e if f(e) > 0, put reverse(e) in edge(G) with capacity f(e).
(edges of Gy show what modifications are possible)
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Using the residual graph

path from s to t in Gy gives a way to increase the value in G.
® blue edge of capacity c: can increase the flow by up to ¢ on that edge in G

® red edge of capacity c: can decrease the flow by up to c on the reverse of this edge in G

improvement step:
® compute the residual graph

® find a (simple) path v from s to ¢ in GV, if one exists, using BFS, DFS, or something
else (can assume O(m))

® let © be the minimal value of all capacities on v in Gy
¢ update the flow on G accordingly
- increase the blue edges by z

- decrease the reverse of red edges by «
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Correctness of the improvement step
Claim

after an improvement step,
® we still have a flow on G
® the value has increased by =

¢ if we had an integer flow (and integer capacities in G), still have an integer flow

Proof
® we still have a flow
e all flow values on the edges are > 0 and do not exceed capacities
(case discussion for red / blue edges)
® at any vertex v, incoming flow still equals outgoing flow
(if v is not on the path, nothing changes, else case discussion x 4)
® the value increases
¢ the path must have a single edge containing s, and this is edge is blue
® integer flow: z is an integer 11 / 18



Ford and Fulkerson’s algorithm

Max Flow algorithm
e jnitialize the flow with all values at 0

® while possible, do the improvement step

The algorithm computes a maximal flow

Proof: will take some work

Runtime is O(mM ), where M is the maximal value of the flow.

Proof: each improvement step costs O(m) and increases the value by at least 1 (integers!),
so we can do at most M improvement steps.
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An example of a slow calculation
flow residual graph
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An example of a slow calculation

flow residual graph augmenting path
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flow
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Integer capacities needed for termination

let r = (v/5 — 1)/2 ~ 0.618, L a large integer and consider this graph:

Observations
® casy to find a flow of value 2L + 1
e this is the best we can do (max flow = min cut, next lecture)

¢ but Ford-Fulkerson may loop forever
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Initialization

Remarks:
e flow on edges from s and edges to t not shown:

® large capacity,
® never a bottleneck

® value of the flow so far: 1
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Two augmentation steps

Flow increases by 2r*t?1
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Two augmentation steps

Flow increases by 2r*t?1
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Another two augmentation steps

Flow increases by 2r*t2, and we are back to the previous step with i < i + 2
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Another two augmentation steps

Flow increases by 2r*t2, and we are back to the previous step with i < i + 2
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Conclusion

Regarding Ford-Fulkerson’s algorithm

® may loop forever, with value approaching
1+2) ri=+v5+2
i>1
e optimal flow is 2L + 1 (L large)
Computing with irrational numbers?
e computing with powers of r feasible:

i

rt— +ﬁ\/5, ai, by, ¢;, d; integers
b d;

can be added, multiplied, compared

* but assuming that a;, b;, ¢;, d; fit in a word is irrealistic, a;, b; are ©(golden ratio’)
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