
CS 341: Algorithms

Lecture 16: Max flow

Éric Schost
based on lecture notes by many other CS341 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Fall 2024

1 / 18

Goals

Next three lectures:
• basic results on flows and cuts
• Ford-Fulkerson algorithm for flows
• correctness via max flow = min cut
• some applications

2 / 18

Flows
Setup.
• let G be a directed graph, with no isolated vertex (m ≥ n/2), and let c be a capacity

on the edges of G
- for all e, c(e) ≥ 0
- by default, c(e) is an integer
• we isolate two vertices in G, which will be called the source s and the sink t.

there is no edge going to s or from t.
• we want to send as much “flow” as possible (water in pipes, material on transport

networks, . . .) while respecting certain rules.

2

2

2

1

1

1

1

3

 s t

3 / 18

Flows

Definition: a flow is a function f of the edges that satisfies
• for any edge e, we have 0 ≤ f(e) ≤ c(e)

• the amount of flow that enters a vertex equals the amount of flow that goes out of it
(except at s and t)

1/2

1/2

2/2

1/1

1/1

0/1

1/1

2/3

 s t

4 / 18

Flows

Definition: the value of a flow is the amount of flow that goes out of the source:

Val(f) =
∑

(s,v) edge
f(e).

1/2

1/2

2/2

1/1

1/1

0/1

1/1

2/3

 s t

here, value is 3.

MaxFlow problem: find a flow with a maximal value.

5 / 18

Producing bananas
Example

We have banana factories F1, F2, F3 and grocery stores S1, S2.
• Fi can produce up to fi tons of bananas,
• Sj wants sj tons of bananas.

How to maximize production?

Compute the maximal flow in the following graph (the middle edges have large capacity,
such as f1, f2, f3).

s t

f1

f2

f3

s1

s2

What if there is a limit ℓi,j on the quantity shippable from Fi to Sj?

6 / 18

Producing bananas
Example

We have banana factories F1, F2, F3 and grocery stores S1, S2.
• Fi can produce up to fi tons of bananas,
• Sj wants sj tons of bananas.

How to maximize production?

Compute the maximal flow in the following graph (the middle edges have large capacity,
such as f1, f2, f3).

s t

f1

f2

f3

s1

s2

What if there is a limit ℓi,j on the quantity shippable from Fi to Sj?
6 / 18

Ford-Fulkerson’s algorithm

7 / 18

Improving the value
we may have to decrease the flow through some edges.

1/2

1/2

2/2

1/1

1/1

0/1

1/1

2/3

 s t

here, we are stuck if we only allow to increase all edges’ flow.

8 / 18

Improving the value
we may have to decrease the flow through some edges.

2/2

2/2

1/1

0/1

1/1

1/1

3/3

 s t

2/2

we improve the value to 4 by redirecting some flow that was going through the red edge.
amounts to sending one extra flow unit all along the colored path, taking the red edge
backward.

8 / 18

The residual graph
The residual graph Gf shows all the ways to increase the value of the flow.

Definition
• vertices of Gf are those of G.
• for e in E

• if f(e) < c(e), put e in edge(Gf) with capacity c(e) − f(e)
• if f(e) > 0, put reverse(e) in edge(Gf) with capacity f(e).

(edges of Gf show what modifications are possible)

1/2

1/2

2/2

1/1

1/1

0/1

1/1

2/3

 s t

9 / 18

The residual graph
The residual graph Gf shows all the ways to increase the value of the flow.

Definition
• vertices of Gf are those of G.
• for e in E

• if f(e) < c(e), put e in edge(Gf) with capacity c(e) − f(e)
• if f(e) > 0, put reverse(e) in edge(Gf) with capacity f(e).

(edges of Gf show what modifications are possible)

1

1

 s t

1

1

1

1

2

1

1

2

1

9 / 18

Using the residual graph

path from s to t in Gf gives a way to increase the value in G.
• blue edge of capacity c: can increase the flow by up to c on that edge in G

• red edge of capacity c: can decrease the flow by up to c on the reverse of this edge in G

improvement step:
• compute the residual graph
• find a (simple) path γ from s to t in Gf , if one exists, using BFS, DFS, or something

else (can assume O(m))
• let x be the minimal value of all capacities on γ in Gf

• update the flow on G accordingly
- increase the blue edges by x

- decrease the reverse of red edges by x

10 / 18

Correctness of the improvement step
Claim

after an improvement step,
• we still have a flow on G

• the value has increased by x

• if we had an integer flow (and integer capacities in G), still have an integer flow

Proof
• we still have a flow
• all flow values on the edges are ≥ 0 and do not exceed capacities

(case discussion for red / blue edges)
• at any vertex v, incoming flow still equals outgoing flow

(if v is not on the path, nothing changes, else case discussion × 4)
• the value increases
• the path must have a single edge containing s, and this is edge is blue

• integer flow: x is an integer 11 / 18

Ford and Fulkerson’s algorithm
Max Flow algorithm
• initialize the flow with all values at 0
• while possible, do the improvement step

Claim

The algorithm computes a maximal flow

Proof: will take some work

Claim

Runtime is O(mM), where M is the maximal value of the flow.

Proof: each improvement step costs O(m) and increases the value by at least 1 (integers!),
so we can do at most M improvement steps.

12 / 18

An example of a slow calculation
flow residual graph augmenting path

0/100000

0/100000 0/100000

0/1
s t

0/100000
100000

100000 100000

1
s t

100000 100000

100000 100000

1
s t

100000

1/100000

0/100000 1/100000

1/1
s t

0/100000

1
s t

100000 99999

1

1

99999 100000

1
s t

100000 99999

1

1

99999 100000

1/100000

1/100000

0/1
s t

1/100000

1/100000

s t

99999 99999

1

99999 99999

1 1

1
1 s t

99999 99999

1

99999

1 1

1
1

99999

13 / 18

An example of a slow calculation
flow residual graph augmenting path

0/100000

0/100000 0/100000

0/1
s t

0/100000
100000

100000 100000

1
s t

100000 100000

100000 100000

1
s t

100000

1/100000

0/100000 1/100000

1/1
s t

0/100000

1
s t

100000 99999

1

1

99999 100000

1
s t

100000 99999

1

1

99999 100000

1/100000

1/100000

0/1
s t

1/100000

1/100000

s t

99999 99999

1

99999 99999

1 1

1
1 s t

99999 99999

1

99999

1 1

1
1

99999

13 / 18

An example of a slow calculation
flow residual graph augmenting path

0/100000

0/100000 0/100000

0/1
s t

0/100000
100000

100000 100000

1
s t

100000 100000

100000 100000

1
s t

100000

1/100000

0/100000 1/100000

1/1
s t

0/100000

1
s t

100000 99999

1

1

99999 100000

1
s t

100000 99999

1

1

99999 100000

1/100000

1/100000

0/1
s t

1/100000

1/100000

s t

99999 99999

1

99999 99999

1 1

1
1 s t

99999 99999

1

99999

1 1

1
1

99999

13 / 18

An example of a slow calculation
flow residual graph augmenting path

0/100000

0/100000 0/100000

0/1
s t

0/100000
100000

100000 100000

1
s t

100000 100000

100000 100000

1
s t

100000

1/100000

0/100000 1/100000

1/1
s t

0/100000

1
s t

100000 99999

1

1

99999 100000

1
s t

100000 99999

1

1

99999 100000

1/100000

1/100000

0/1
s t

1/100000

1/100000

s t

99999 99999

1

99999 99999

1 1

1
1 s t

99999 99999

1

99999

1 1

1
1

99999

13 / 18

An example of a slow calculation
flow residual graph augmenting path

0/100000

0/100000 0/100000

0/1
s t

0/100000
100000

100000 100000

1
s t

100000 100000

100000 100000

1
s t

100000

1/100000

0/100000 1/100000

1/1
s t

0/100000

1
s t

100000 99999

1

1

99999 100000

1
s t

100000 99999

1

1

99999 100000

1/100000

1/100000

0/1
s t

1/100000

1/100000

s t

99999 99999

1

99999 99999

1 1

1
1 s t

99999 99999

1

99999

1 1

1
1

99999

13 / 18

An example of a slow calculation
flow residual graph augmenting path

0/100000

0/100000 0/100000

0/1
s t

0/100000
100000

100000 100000

1
s t

100000 100000

100000 100000

1
s t

100000

1/100000

0/100000 1/100000

1/1
s t

0/100000

1
s t

100000 99999

1

1

99999 100000

1
s t

100000 99999

1

1

99999 100000

1/100000

1/100000

0/1
s t

1/100000

1/100000

s t

99999 99999

1

99999 99999

1 1

1
1 s t

99999 99999

1

99999

1 1

1
1

99999

13 / 18

An example of a slow calculation
flow residual graph augmenting path

0/100000

0/100000 0/100000

0/1
s t

0/100000
100000

100000 100000

1
s t

100000 100000

100000 100000

1
s t

100000

1/100000

0/100000 1/100000

1/1
s t

0/100000

1
s t

100000 99999

1

1

99999 100000

1
s t

100000 99999

1

1

99999 100000

1/100000

1/100000

0/1
s t

1/100000

1/100000

s t

99999 99999

1

99999 99999

1 1

1
1 s t

99999 99999

1

99999

1 1

1
1

99999

13 / 18

An example of a slow calculation
flow residual graph augmenting path

0/100000

0/100000 0/100000

0/1
s t

0/100000
100000

100000 100000

1
s t

100000 100000

100000 100000

1
s t

100000

1/100000

0/100000 1/100000

1/1
s t

0/100000

1
s t

100000 99999

1

1

99999 100000

1
s t

100000 99999

1

1

99999 100000

1/100000

1/100000

0/1
s t

1/100000

1/100000

s t

99999 99999

1

99999 99999

1 1

1
1 s t

99999 99999

1

99999

1 1

1
1

99999

13 / 18

An example of a slow calculation
flow residual graph augmenting path

0/100000

0/100000 0/100000

0/1
s t

0/100000
100000

100000 100000

1
s t

100000 100000

100000 100000

1
s t

100000

1/100000

0/100000 1/100000

1/1
s t

0/100000

1
s t

100000 99999

1

1

99999 100000

1
s t

100000 99999

1

1

99999 100000

1/100000

1/100000

0/1
s t

1/100000

1/100000

s t

99999 99999

1

99999 99999

1 1

1
1 s t

99999 99999

1

99999

1 1

1
1

99999

13 / 18

Integer capacities needed for termination
let r = (

√
5− 1)/2 ≃ 0.618, L a large integer and consider this graph:

s

s

s

s

s

t

L

L

L

L

L

L

1

1

r

Observations
• easy to find a flow of value 2L + 1
• this is the best we can do (max flow = min cut, next lecture)
• but Ford-Fulkerson may loop forever

14 / 18

Initialization

s

s

s

s

s

t

L

L

L

L

L

L

0/1

0/1

0/r

s

s

s

s

s

t

L

L

L

L

L

L

x = 1 s

s

s

s

s

t

L

L

L

L

L

L

0 = 1− r0

1

0 = r − r1

Remarks:
• flow on edges from s and edges to t not shown:
• large capacity,
• never a bottleneck

• value of the flow so far: 1

15 / 18

Two augmentation steps

s

s

s

s

s

t

L

L

L

L

L

L

1− ri

1

r − ri+1

s

s

s

s

s

t

L

L

L

L

L

Lx = ri+1

s

s

s

s

s

t

L

L

L

L

L

L

1− ri + ri+1

1− ri+1

r

s

s

s

s

s

t

L

L

L

L

L

L

x = ri+1
s

s

s

s

s

t

L

L

L

L

L

L

1− ri+2

1

r − ri+1

Flow increases by 2ri+1
16 / 18

Two augmentation steps

s

s

s

s

s

t

L

L

L

L

L

L

1− ri

1

r − ri+1

s

s

s

s

s

t

L

L

L

L

L

Lx = ri+1

s

s

s

s

s

t

L

L

L

L

L

L

1− ri+2

1− ri+1

r

s

s

s

s

s

t

L

L

L

L

L

L

x = ri+1
s

s

s

s

s

t

L

L

L

L

L

L

1− ri+2

1

r − ri+1

Flow increases by 2ri+1
16 / 18

Another two augmentation steps

s

s

s

s

s

t

L

L

L

L

L

L

1− ri+2

1

r − ri+1

s

s

s

s

s

t

L

L

L

L

L

L

x = ri+2

s

s

s

s

s

t

L

L

L

L

L

L

1
1− ri+2

r − ri+1 + ri+2

s

s

s

s

s

t

L

L

L

L

L

L

x = ri+2
s

s

s

s

s

t

L

L

L

L

L

L

1− ri+2

1

r − ri+3

Flow increases by 2ri+2, and we are back to the previous step with i← i + 2 17 / 18

Another two augmentation steps

s

s

s

s

s

t

L

L

L

L

L

L

1− ri+2

1

r − ri+1

s

s

s

s

s

t

L

L

L

L

L

L

x = ri+2

s

s

s

s

s

t

L

L

L

L

L

L

1
1− ri+2

r − ri+3

s

s

s

s

s

t

L

L

L

L

L

L

x = ri+2
s

s

s

s

s

t

L

L

L

L

L

L

1− ri+2

1

r − ri+3

Flow increases by 2ri+2, and we are back to the previous step with i← i + 2 17 / 18

Conclusion
Regarding Ford-Fulkerson’s algorithm
• may loop forever, with value approaching

1 + 2
∑
i≥1

ri =
√

5 + 2

• optimal flow is 2L + 1 (L large)

Computing with irrational numbers?
• computing with powers of r feasible:

ri = ai

bi
+ ci

di

√
5, ai, bi, ci, di integers

can be added, multiplied, compared
• but assuming that ai, bi, ci, di fit in a word is irrealistic, ai, bi are Θ(golden ratioi)

18 / 18

