CS 341: Algorithms

Lecture 16: Max flow

Eric Schost

based on lecture notes by many other CS341 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Fall 2024

1/18

Goals

Next three lectures:

® basic results on flows and cuts

Ford-Fulkerson algorithm for flows

correctness via max flow = min cut

® some applications

2/18

Flows

Setup.
® let G be a directed graph, with no isolated vertex (m > n/2), and let ¢ be a capacity
on the edges of G
- for all e, ¢(e) >0
- by default, c(e) is an integer
® we isolate two vertices in G, which will be called the source s and the sink ¢.
there is no edge going to s or from t.

® we want to send as much “flow” as possible (water in pipes, material on transport
networks, ...) while respecting certain rules.

2
O—>O3
sZ/(1\t
() 1 ()
T e

1 3/18

Flows

Definition: a flow is a function f of the edges that satisfies
e for any edge e, we have 0 < f(e) < c(e)

¢ the amount of flow that enters a vertex equals the amount of flow that goes out of it
(except at s and t)

12
©O—=0_
212
/ /1 \
S . ‘ t
/1
R o0

01

4/18

Flows

Definition: the value of a flow is the amount of flow that goes out of the source:

Val(f) = > fle).

(s,v) edge

12
2/2 o o \2/3\
/ 11
S . . t

1/1
s el
O—i=0
here, value is 3.

MaxFlow problem: find a flow with a maximal value.

5/18

Producing bananas

We have banana factories Fy, Fa, F3 and grocery stores Sy, Ss.
® F; can produce up to f; tons of bananas,
® S; wants s; tons of bananas.

How to maximize production?

6/18

Producing bananas

Example

We have banana factories Fy, Fa, F3 and grocery stores Sy, Ss.
® F; can produce up to f; tons of bananas,
® S; wants s; tons of bananas.

How to maximize production?

Compute the maximal flow in the following graph (the middle edges have large capacity,
such as f17f27 f3)

S.—>O

6/18

Ford-Fulkerson’s algorithm

7/18

Improving the value

we may have to decrease the flow through some edges.

172
yO .0\2/3\
1/1
s. ‘t

1/1
}x@ O/m'

0/1
here, we are stuck if we only allow to increase all edges’ flow.

8/18

Improving the value

we may have to decrease the flow through some edges.

2/2
yO .0\3/3\
1/1
s. ‘t

0/1
%O o

171
we improve the value to 4 by redirecting some flow that was going through the red edge.

amounts to sending one extra flow unit all along the colored path, taking the red edge
backward.

8/18

The residual graph
The residual graph Gy shows all the ways to increase the value of the flow.
Definition
® vertices of Gy are those of G.
e forein F
e if f(e) < c(e), put e in edge(Gy) with capacity c(e) — f(e)
e if f(e) > 0, put reverse(e) in edge(G) with capacity f(e).
(edges of Gy show what modifications are possible)

12
O—=0 _ s
212
/ 111 \
S . ‘ t
11
R o0

0/1
9/18

The residual graph
The residual graph Gy shows all the ways to increase the value of the flow.
Definition
® vertices of Gy are those of G.
e forein F
e if f(e) < c(e), put e in edge(Gy) with capacity c(e) — f(e)
e if f(e) > 0, put reverse(e) in edge(G) with capacity f(e).
(edges of Gy show what modifications are possible)

O<—O

e

l
9/18

Using the residual graph

path from s to t in Gy gives a way to increase the value in G.
® blue edge of capacity c: can increase the flow by up to ¢ on that edge in G

® red edge of capacity c: can decrease the flow by up to c on the reverse of this edge in G

improvement step:
® compute the residual graph

® find a (simple) path v from s to ¢ in GV, if one exists, using BFS, DFS, or something
else (can assume O(m))

® let © be the minimal value of all capacities on v in Gy
¢ update the flow on G accordingly
- increase the blue edges by z

- decrease the reverse of red edges by «

10/ 18

Correctness of the improvement step
Claim

after an improvement step,
® we still have a flow on G
® the value has increased by =

¢ if we had an integer flow (and integer capacities in G), still have an integer flow

Proof
® we still have a flow
e all flow values on the edges are > 0 and do not exceed capacities
(case discussion for red / blue edges)
® at any vertex v, incoming flow still equals outgoing flow
(if v is not on the path, nothing changes, else case discussion x 4)
® the value increases
¢ the path must have a single edge containing s, and this is edge is blue
® integer flow: z is an integer 11 / 18

Ford and Fulkerson’s algorithm

Max Flow algorithm
e jnitialize the flow with all values at 0

® while possible, do the improvement step

The algorithm computes a maximal flow

Proof: will take some work

Runtime is O(mM), where M is the maximal value of the flow.

Proof: each improvement step costs O(m) and increases the value by at least 1 (integers!),
so we can do at most M improvement steps.

12/18

An example of a slow calculation
flow residual graph

0/100000, V‘l 00000

s @ o @t

0/ 10%\ AOOOOO

@)

augmenting path

13/18

An example of a slow calculation
flow residual graph

o) @)
0/10%' Vjooooo 'OOW \(10000

s @ o @t s @ ! [N

0/10%\ ﬁ‘looooo IOO(M /;oooo

@) o

augmenting path

13/18

An example of a slow calculation
flow residual graph

o) @)
0/10%' Vjooooo 'OOW \ioooo

s @ o @t s @ ! [N

0/10%\ ﬁ‘looooo IOO(M /;oooo

@) o

augmenting path

lOOV \(ioooo

s @ ! @t
IOO(M Aoooo
@)}

13/18

An example of a slow calculation

flow

0/100000, V‘l 00000

s @ o @t

0/ 10%\ AOOOOO

@)

1/100000, V‘l 00000

Y SRERY

0/ 10&\ %'100000

@)

residual graph

IOO(V' \(ioooo

s @ ! @t
IOO(M /;0000
@)

augmenting path

lOOV \(ioooo

s @ ! @t
IOO(M Aoooo
@)}

13/18

An example of a slow calculation

flow

0/100000, V‘l 00000

s @ o @t

0/ 10%\ AOOOOO

@)

1/100000, V‘l 00000

Y SRERY

o/ 10%\ %'100000

@)

residual graph

IOO(V' \(ioooo

s @ ! @t
lOO(M /;0000
@)

@)
99992//‘ \(10000
s @, : ! 1 @t
100(%A %999
@)

augmenting path

lOOV \(ioooo

s @ ! @t
IOO(M Aoooo
@)}

13/18

An example of a slow calculation

flow

0/100000, V‘l 00000

s @ o @t

0/ 10%\ AOOOOO

@)

1/100000, V‘l 00000

Y SRERY

0/ 10&\ %'100000

@)

residual graph

IOO(V' \(ioooo

s @ ! @t
lOO(M /;0000
@)

@)
99992//‘ \(10000
s @, : ! 1 @t
100(%A %999
@)

augmenting path

lOOV \(ioooo

s @ ! @t
IOOM Aoooo
@)

@)
99992//v woooo
s @ ! ! 1 @t
100(& ‘/99999
@)

13/18

An example of a slow calculation

flow residual graph augmenting path
o 9 Q
O,IOW WOOOOO IOO(V' \(ioooo lOOV \(ioooo
s @ @t s @ 1 @t 5@ ! @t
0/10%\ Aooooo lOO(M /;oooo 100(%‘ Aoooo
@) @) @)}

o @) @)
1/10%‘ V‘looooo 99992//‘ \(ioooo 99992//' woooo
L1

1
s @ n @¢ s@ @t 5@ L@t

]
0/10%\ ﬁooooo 100(%A %999 100(& ‘/99999

@] @] @]
@)

1/10% \1/‘100000

s @ e @t

1/1 O&\ /'1 00000

© 13/18

flow

0/100000, V‘l 00000

s @ o @t

0/ 10%\ AOOOOO

@)

1/100000, V‘l 00000

s @ @t

o/ 10%\ %'100000

@)

1/100000, \1/‘100000

s @ e @t

1/1 O&\ /'1 00000

@)

An example of a slow calculation

residual graph

IOO(V' \(ioooo

s @ ! @t
lOO(M /;0000
@)

O
9999?//' \(10000
s @ : 1 1 @t
100(& ‘/99999
@]

O
9999i//' '\{999
SO |1 @t
9999;\\‘ ‘/99999
O

augmenting path

lOOV \(ioooo

s @ ! @t
IOOM Aoooo
@)

@)
99992//v woooo
s @ ! ! 1 @t
100(& ‘/99999
@)

13/18

flow

0/100000, V‘l 00000

s @ o @t

0/ 10%\ AOOOOO

@)

1/100000, V‘l 00000

s @ @t

0/ 10&\ %'100000

@)

1/100000, \1/‘100000

s @ e @t

1/1 O&\ /'1 00000

@)

An example of a slow calculation

residual graph

IOO(V' \(ioooo

s @ ! @t
lOO(M /;0000
@)

O
9999?//' \(10000
s @ : 1 1 @t
100(& ‘/99999
@]

O
9999i//' '\{999
SO |1 @t
9999;\\‘ ‘/99999
O

augmenting path

lOOV \(ioooo

s @ ! @t
IOO(M Aoooo
@)

O
99992//' woooo
s @, ! ! 1 @t
100(& ‘/99999
O
O
999% '\%’99
SO, |1 @t
9999;\\4 ‘/99999
o

13/18

Integer capacities needed for termination

let r = (v/5 — 1)/2 ~ 0.618, L a large integer and consider this graph:

Observations
® casy to find a flow of value 2L + 1
e this is the best we can do (max flow = min cut, next lecture)

¢ but Ford-Fulkerson may loop forever

14/18

Initialization

Remarks:
e flow on edges from s and edges to t not shown:

® large capacity,
® never a bottleneck

® value of the flow so far: 1

15/ 18

Two augmentation steps

Flow increases by 2r*t?1

16/ 18

Two augmentation steps

Flow increases by 2r*t?1

16/ 18

Another two augmentation steps

Flow increases by 2r*t2, and we are back to the previous step with i < i + 2

1718

Another two augmentation steps

Flow increases by 2r*t2, and we are back to the previous step with i < i + 2

1718

Conclusion

Regarding Ford-Fulkerson’s algorithm

® may loop forever, with value approaching
1+2) ri=+v5+2
i>1
e optimal flow is 2L + 1 (L large)
Computing with irrational numbers?
e computing with powers of r feasible:

i

rt— +ﬁ\/5, ai, by, ¢;, d; integers
b d;

can be added, multiplied, compared

* but assuming that a;, b;, ¢;, d; fit in a word is irrealistic, a;, b; are ©(golden ratio’)

1818

