
CS 341: Algorithms

Lecture 17: Max flow = Min cut

Éric Schost
based on lecture notes by many other CS341 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Fall 2024

1 / 17

Cuts

2 / 17

Cuts

Definition
• a cut is a partition of the vertices into sets A and B = V − A, with s ∈ A and t ∈ B.
• the capacity of the cut is

c(A) =
∑

e:A→B

c(e)

(does not depend on any flow, only on the graph and its capacities)
• if f is a flow, the out-going and in-going flows of the cut are

v out(f, A) =
∑

e:A→B

f(e), v in(f, A) =
∑

e:B→A

f(e)

3 / 17

Examples
2

2

2

1

1

1

1

3

 s t

• A is in red and B in light blue,
• capacity is 2 + 2 + 3 = 7,

4 / 17

Examples
1/2

1/2

2/2

1/1

1/1

0/1

1/1

2/3

 s t

• A is in red and B in light blue,
• capacity is 2 + 2 + 3 = 7,
• out-going flow is 2 + 1 + 2 = 5,
• in-going flow is 1 + 1 = 2,
• value is 3

4 / 17

Examples
2

2

2

1

1

1

1

3

 s t

• A is in red and B in light blue,
• capacity is 2 + 3 + 1 = 6,

4 / 17

Examples
1/2

1/2

2/2

1/1

1/1

0/1

1/1

2/3

 s t

• A is in red and B in light blue,
• capacity is 2 + 3 + 1 = 6,
• out-going flow is 1 + 2 + 1 = 4,
• in-going flow is 1,
• value is 3

4 / 17

Flows and cuts
Claim

For any flow f and any cut A, we have

Val(f) = v out(f, A) − v in(f, A)

Remark: this shows that what comes out of s equals what comes into t.

Proof: induction on A.
• true when A = {s}, by definition.
• suppose this is true for a cut A, B = V − A, we show this is true for the cut

A′ = A ∪ {v}, B′ = B − {v}, for any vertex v ∈ B (with v ̸= t).
What we need to do:

• relate v out(f, A) to v out(f, A′),
• relate v in(f, A) to v in(f, A′).

5 / 17

Flows and cuts
Claim

For any flow f and any cut A, we have

Val(f) = v out(f, A) − v in(f, A)

Remark: this shows that what comes out of s equals what comes into t.

Proof: induction on A.
• true when A = {s}, by definition.
• suppose this is true for a cut A, B = V − A, we show this is true for the cut

A′ = A ∪ {v}, B′ = B − {v}, for any vertex v ∈ B (with v ̸= t).
What we need to do:

• relate v out(f, A) to v out(f, A′),
• relate v in(f, A) to v in(f, A′).

5 / 17

Step 1

v out(f, A) =
∑

e:A→B

f(e)

=
∑

e:A→v

f(e) +
∑

e:A→B′

f(e)

and

v out(f, A′) =
∑

e:A′→B′

f(e)

=
∑

e:A→B′

f(e) +
∑

e:v→B′

f(e).

so
v out(f, A′) = v out(f, A) −

∑
e:A→v

f(e) +
∑

e:v→B′

f(e)

6 / 17

Step 1

so
v out(f, A′) = v out(f, A) −

∑
e:A→v

f(e) +
∑

e:v→B′

f(e)

6 / 17

Step 2

v in(f, A) =
∑

e:B→A

f(e)

=
∑

e:v→A

f(e) +
∑

e:B′→A

f(e)

and

v in(f, A′) =
∑

e:B′→A′

f(e)

=
∑

e:B′→A

f(e) +
∑

e:B′→v

f(e).

so
v in(f, A′) = v in(f, A) −

∑
e:v→A

f(e) +
∑

e:B′→v

f(e)

7 / 17

Step 2

so
v in(f, A′) = v in(f, A) −

∑
e:v→A

f(e) +
∑

e:B′→v

f(e)

7 / 17

Step 3
Because f is a flow, we have∑

e:v→A

f(e) +
∑

e:v→B′
f(e) =

∑
e:B′→v

f(e) +
∑

e:A→v

f(e)

so
v out(f, A′) = v out(f, A) −

∑
e:A→v

f(e) +
∑

e:v→B′

f(e)

= v out(f, A) −
∑

e:v→A

f(e) +
∑

e:B′→v

f(e)

and still
v in(f, A′) = v in(f, A) −

∑
e:v→A

f(e) +
∑

e:B′→v

f(e)

This gives
v out(f, A′) − v in(f, A′) = v out(f, A) − v in(f, A)

= Val(f).
8 / 17

Maximum flow and minimal cut

Consequences
• for any flow f and any cut A, we have

Val(f) ≤ c(A).

proof:

Val(f) = v out(f, A) − v in(f, A)
≤ v out(f, A)
≤ c(A)

• so the maximal value of a flow ≤ minimal capacity of a cut
• and if we find any flow and cut with equality, they are optimal

9 / 17

Example 1

2

2

2

1

1

1

1

3

s t

Max flow?
• we found 4 in the previous lecture
• with A = {s}, c(A) = 4
• so max flow = min cut = 4

10 / 17

Example 2
last lecture: r = (

√
5 − 1)/2 ≃ 0.618, L large enough

s

a

b

c

d

t

L

L

L

L

L

L

1

1

r

Max flow?
• easy to get 2L + 1
• with A = {s, a, b}, c(A) = 2L + 1
• so max flow = min cut = 2L + 1

11 / 17

Max flow = min cut
Claim

no improving path in Gf =⇒ can find a cut A such that =⇒ f is a max flow
Val(f) = c(A)

(first =⇒ to do, second =⇒ already done)

Consequences:
• maximal value of a flow = minimal capacity of a cut
• if Ford and Fulkerson’s algorithm terminates, we have a max flow and also a min cut.

(we know that for integer capacities, Ford-Fulkerson’s algorithm always terminates)

12 / 17

Max flow = min cut
Claim

no improving path in Gf ⇐⇒ can find a cut A such that ⇐⇒ f is a max flow
Val(f) = c(A)

(first =⇒ to do, second =⇒ already done)

Consequences:
• maximal value of a flow = minimal capacity of a cut
• if Ford and Fulkerson’s algorithm terminates, we have a max flow and also a min cut.

(we know that for integer capacities, Ford-Fulkerson’s algorithm always terminates)

12 / 17

Proof

How to build A

• take a flow f with no augmenting path in Gf

• let A be of vertices reachable from s in Gf

This is a cut:
• s is in A,
• no path s → t in Gf so t is in B = V − A

Left to prove: Val(f) = c(A)

13 / 17

Computing the value of f

Observation: there is no edge A → B in Gf

out-going flow:
• all outgoing edges (A → B) are saturated in G: f(e) = c(e)
• gives v out(f, A) = c(A)

in-going flow
• all incoming edges (B → A) have no flow in G: f(e) = 0
• gives v in(f, A) = 0

finally: c(A) = v out(f, A) − v in(f, A) = Val(f)

14 / 17

Remark 1: Edmonds-Karp (bonus)
A strategy that refines Ford-Fulkerson: choose a shortest path (BFS)

Key ideas
• f : old flow, f ′ : new flow
• distances from s in the residual graphs cannot decrease: for e = (u, v) in Gf ′ ,

• if e was not in Gf , δf (s, v) ≤ δf ′(s, v) + 2
• else, δf (s, v) ≤ δf ′(s, v)

(takes some work)
• δf (s, v) ≤ n so e can appear in the residual graph at most n/2 times
• but then e also can disappear at most n/2 times
• each iteration, at least one edge disappears from Gf

• at most 2m edges so at most mn iterations
• runtime O(m2n)

15 / 17

Remark 2: thick paths (bonus)
A slightly weaker strategy to refine Ford-Fulkerson: choose a path that maximizes the
bottleneck capacity x.

Key ideas
• finding the thickest path: similar to Dijkstra

- Dijkstra minimizes
∑

e∈γ w(e)
- here we maximize mine∈γ c(e)

• in Gf , there is a path with x ≥ (M − Val(f))/2m, M = max flow so

Val(f ′) ≥ Val(f) + (M − Val(f))/2m

(takes some work)
• if capacities are integers, implies we do O(m log(M)) iterations
• total O(m2 log(n) log(M))

16 / 17

Remark 3: maximal flow from linear programming (bonus)

Equations for the max flow problem:
1. create a variable fu,v for each edge (u, v) and the linear constraints

fu,v ≥ 0, fu,v ≤ c(u, v),
∑

(u,v) edge
fu,v =

∑
(v,w) edge

fv,w

2. maximize ∑
(s,v) edge

fs,v.

• this is an instance of a linear programming problem
• max flow / min cut special case of linear programming duality (max something = min

something else)
(takes work)

17 / 17

