CS 341: Algorithms

Lecture 17: Max flow = Min cut

Eric Schost

based on lecture notes by many other CS341 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Fall 2024

1/17



Cuts

2/17



Cuts

Definition
® a cut is a partition of the vertices into sets A and B =V — A, withs € Aandt € B.

® the capacity of the cut is

e:A—B

(does not depend on any flow, only on the graph and its capacities)

e if f is a flow, the out-going and in-going flows of the cut are

Vout(f, A Z fle), vm(f, A Z fle

e:A—B e:B—A

3/17



Examples

e Aisin red and B in light blue,
® capacityis2+2+4+3 =17,

4/17



Examples

172

O—= 0 _,;
212
/ 11 \
" ® 11 o
gl Yo

0/1

A is in red and B in light blue,
® capacityis2+2+4+3=17,
out-going flow is 24+ 142 =5,
® in-going flow is 1 +1 = 2,

value is 3

4/17



Examples

e Aisin red and B in light blue,
® capacity is 2+ 3+ 1 =6,

4/17



Examples

172

®e—=0_,;
21
9
s. Ot
11
gl te

0/1

A is in red and B in light blue,
® capacity is 2+ 34+ 1 =6,
out-going flow is 1 +2 + 1 =4,

® in-going flow is 1,

value is 3

4/17



Flows and cuts

For any flow f and any cut A, we have

Val(f) = Uout(f, A) - Uin(fa A)

Remark: this shows that what comes out of s equals what comes into ¢.

5/17



Flows and cuts
Claim

For any flow f and any cut A, we have
Val(f) = 'Uout(f7 A) - Uin(fv A)
Remark: this shows that what comes out of s equals what comes into .

Proof: induction on A.

¢ true when A = {s}, by definition.

® suppose this is true for a cut A, B =V — A, we show this is true for the cut

A= AU {v}, B' = B — {v}, for any vertex v € B (with v # t).

What we need to do:

e relate vout(f, A) to vout(f, A),

e relate vin(f, A) to vin(f, A).

5/17



Step 1

Uout(faA) = Z f(e)

e:A—B
= > fleo + > fle)
e:A—v e:A— B’
and
Uout(faA/) = Z f(e)
e:A'—» B’
= D fle + > flo)
e:A— B/’ e:v— B’
SO

Uout(f7A/) = vou(f, 4) — Z fle) + Z f(e)

e:A—v e:v— B’

6/17



Step 1

Uout(f7 A,)

Uout(fyA)_ Z f(6)+ Z f(e)
e:A—v erv—B’

6/17



Step 2

vin(f,4) = D fle)

e:B—A

= Y fe + X fe
e:v—A e:B'—A

and
vin(f,A) = Z f(e)

e:B'— A’

= > fle + X e
e:B'— A e:B'—v

7/17



Step 2

Uin(f; Al)

vin(f,A) = Y fle)+ Do fle)
ev—A e:B'—v

7/17



Step 3

Because f is a flow, we have

Yo fle) + X fle) = > fle) + D fle)

e:v—A e:v— B’/ e:B'—v e:A—v
SO
Uout(ﬁA/) = vout(f, A Z fle) + Z fe)
e:A—v e:v— B’
= Uout f) Z f Z f(e)
ev—A e:B'—v
and still
/Ull’l(f7A/) =vin(f, A Z fle Z fe)
erv—A e:B'—v
This gives
Uout<f7A/)_vin(f7A/) = ’Uout(f,A)—'an<f,A)
Val(f).

8/17



Maximum flow and minimal cut

Consequences

e for any flow f and any cut A, we have
Val(f) < e(A).

proof:

Val(f) = vow(f,A4) —vin(f, 4)
Uout(faA)
c(A)

VANVAN

® 5o the maximal value of a flow < minimal capacity of a cut

¢ and if we find any flow and cut with equality, they are optimal

9/17



Example 1

1
\;\\‘\ ol o //ﬁf'r
Max flow?

¢ we found 4 in the previous lecture
® with A = {s}, ¢c(A) =4

® 50 max flow = min cut = 4

10/17



Example 2
last lecture: r = (v/5 —1)/2 ~ 0.618, L large enough

Max flow?
® casy to get 2L + 1
e with A= {s,a,b}, c(A) =2L+1
® so max flow = min cut = 2L + 1

11/17



Max flow = min cut
Claim
no improving path in Gy == can find a cut A such that = f is a max flow
Val(f) = o(A)

(first = to do, second = already done)

Consequences:
® maximal value of a flow = minimal capacity of a cut

e if Ford and Fulkerson’s algorithm terminates, we have a max flow and also a min cut.

(we know that for integer capacities, Ford-Fulkerson’s algorithm always terminates)

12 /17



Max flow = min cut
Claim
no improving path in Gy <= can find a cut A such that <= f is a max flow
Val(f) = c(4)

(first = to do, second = already done)

Consequences:
® maximal value of a flow = minimal capacity of a cut

e if Ford and Fulkerson’s algorithm terminates, we have a max flow and also a min cut.

(we know that for integer capacities, Ford-Fulkerson’s algorithm always terminates)

12 /17



Proof

How to build A
® take a flow f with no augmenting path in G

® let A be of vertices reachable from s in G

This is a cut:
® sisin A,

®* nopaths -tinGysotisin B=V - A

Left to prove: Val(f) = c¢(A)

13/17



Computing the value of f

Observation: there is no edge A — B in G

out-going flow:
¢ all outgoing edges (A — B) are saturated in G: f(e) = c(e)
® gives Vout(f; A) = c(A)

in-going flow
* all incoming edges (B — A) have no flow in G: f(e) =0
e gives vin(f, A) =0

finally: c(A) = vouw(f, A) — vin(f, A) = Val(f)

14 /17



Remark 1: Edmonds-Karp (bonus)

A strategy that refines Ford-Fulkerson: choose a shortest path (BFS)

Key ideas

f :old flow, f’: new flow

distances from s in the residual graphs cannot decrease: for e = (u,v) in G,
e if e was not in Gy, 67(s,v) < dp(s,v) +2
® else, §¢(s,v) < 6p(s,v)

(takes some work)

d7(s,v) < m so e can appear in the residual graph at most n/2 times

but then e also can disappear at most n/2 times

each iteration, at least one edge disappears from Gy

at most 2m edges so at most mn iterations

runtime O(m?2n)

15 /17



Remark 2: thick paths (bonus)

A slightly weaker strategy to refine Ford-Fulkerson: choose a path that maximizes the
bottleneck capacity .

Key ideas
¢ finding the thickest path: similar to Dijkstra
- Dijkstra minimizes }° .. w(e)
- here we maximize min.c~ c(e)
in Gy, there is a path with + > (M — Val(f))/2m, M = max flow so

Val(f') > Val(f) + (M — Val(f))/2m

(takes some work)

if capacities are integers, implies we do O(mlog(M)) iterations
total O(m? log(n) log(M))

16 /17



Remark 3: maximal flow from linear programming (bonus)

Equations for the max flow problem:

1. create a variable f,, , for each edge (u,v) and the linear constraints

fu,v >0, fu,v < C(’LL, U), Z fu,v = Z fv,w

(u,v) edge (v,w) edge

2. maximize

> few

(s,v) edge

¢ this is an instance of a linear programming problem

® max flow / min cut special case of linear programming duality (max something = min
something else)

(takes work)

17 /17



