
CS 341: Algorithms

Lecture 18: Applications of flows and cuts

Éric Schost
based on lecture notes by many other CS341 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Fall 2024

1 / 20

Edge disjoint paths

2 / 20

Edge disjoint paths
Problem:

• input: a directed graph, with source s and sink t

• output: the maximum number of edge-disjoint paths s → t

Algorithm
• all edges get capacity 1
• Ford-Fulkerson outputs a 0/1 flow

(0/1 flow = flow which only takes values 0 and 1)
proof: flow values are integers ≤ 1 3 / 20

Edge disjoint paths
Problem:

• input: a directed graph, with source s and sink t

• output: the maximum number of edge-disjoint paths s → t

Algorithm
• all edges get capacity 1
• Ford-Fulkerson outputs a 0/1 flow

(0/1 flow = flow which only takes values 0 and 1)
proof: flow values are integers ≤ 1 3 / 20

Edge disjoint paths
Claim

There is a 0/1 flow with value k iff there are k edge-disjoint paths s → t in G (using
the edges with flow 1)

Paths → flow: set flow to 1 on edges covered by paths

Flow → paths by induction: given a 0/1 flow f with N flow-1 edges, can find Val(f)
edge-disjoint paths s → t in G using only flow-1 edges

• OK for N = 0
• induction assumption: true for 0, 1, . . . , N − 1
• start from s, follow edges with flow 1
• if we loop, set flow to 0 on the cycle → flow with same value and smaller N

• if we get to t, set flow to 0 on the path → flow with value Val(f) − 1 and smaller N

4 / 20

Remarks
1. Runtime:

• value of the flow is at most n so runtime O(mn) if no isolated vertex,
O((m + n)n) otherwise

2. Edge version of Menger’s theorem (from max flow = min cut)
• max number of edge-disjoint paths s → t = min number of edges to remove if we

want to ensure there is no path s → t

• exercise: fill in the details

5 / 20

Remarks
1. Runtime:

• value of the flow is at most n so runtime O(mn) if no isolated vertex,
O((m + n)n) otherwise

2. Edge version of Menger’s theorem (from max flow = min cut)
• max number of edge-disjoint paths s → t = min number of edges to remove if we

want to ensure there is no path s → t

• exercise: fill in the details

3. Vertex-disjoint paths
• transform the graph and find edge-disjoint paths

• n′ ≤ 2n, m′ ≤ m + n 5 / 20

Bipartite matching

6 / 20

Example

Context: students and professors:
• each professor offers one internship, but not all students may be eligible;
• each student wants one internship, and is ready to go for any of them.

Example: 3 students and 3 professors.
P1 will only consider S1 and S2
P2 will only consider S2
P3 will only consider S1 and S3

How to find the best matching?

7 / 20

Bipartite graphs
Definition

a (symmetric) graph G whose vertices are split into two groups Si and Pj , with no
edge between Si’s, or between Pj ’s.

Can be turned into a weighted directed graph G′, adding a source and a sink

s t

8 / 20

Bipartite graphs
Definition

a (symmetric) graph G whose vertices are split into two groups Si and Pj , with no
edge between Si’s, or between Pj ’s.

Can be turned into a weighted directed graph G′, adding a source and a sink

s t

1
1

1

1

1

1

∞

∞

S2

S3

S1 P1

P2

P3

∞

∞

∞

8 / 20

In general

Bipartite matching:
• a set of r edges (between the Si and the Pj) with no common vertex, i.e.,
• vertices Sm1 , . . . , Smr and Pℓ1 , . . . , Pℓr such that Smi is connected to Pℓi

How to find one: set up a flow problem as before
• a matching of size r gives a 0/1 flow of value r

• a 0/1 flow of value r gives a matching of size r as in edge-disjoint paths
(using 1s instead of ∞s, this is edge-disjoint paths)

• Ford-Fulkerson’s algorithm returns a 0/1 flow

Runtime: n + 2 vertices, m + n edges so O((m + n)n)

9 / 20

Minimum vertex cover

Definition
• G = (V, E) is a symmetric graph
• a vertex cover C is a subset of vertices that contains an extremity of every edge
• C vertex cover iff V − C independent set (no vertices in it are directly connected)
• want C as small as possible

Complexity
• trees: dynamic programming (for independent sets)
• bipartite graphs: min cut
• general graphs: NP-hard

10 / 20

König’s theorem

Thm

in a bipartite graph, maximum size of a matching = minimum size of a vertex cover

take a matching of maximum size r

All vertex covers have size at least r

• need at least r vertices to cover these edges

Proof of =
• max flow has value r in G′

• max flow = min cut: there is a cut A, B = V − A of capacity r in G′

• use it to find a vertex cover of size r

11 / 20

König’s theorem

12 / 20

König’s theorem

12 / 20

König’s theorem

Define C = (L ∩ B) ∪ (R ∩ A)

12 / 20

König’s theorem

Define C = (L ∩ B) ∪ (R ∩ A)
• there are no edges blue in L → red in R (they have infinite capacity)
• so C is a vertex cover in G

• and r = c(A) = |(edges s → C)| + |(edges C → t)| = |C|
12 / 20

Special case: d-regular bipartite graphs (bonus)
d-regular:

• all vertices have d incident edges
• if G is also bipartite, then m = d|L| = d|R| and so |L| = |R|

13 / 20

Special case: d-regular bipartite graphs (bonus)
d-regular:

• all vertices have d incident edges
• if G is also bipartite, then m = d|L| = d|R| and so |L| = |R|

Claim

In a d-regular bipartite graph, there is a perfect matching (all vertices are matched)

13 / 20

Special case: d-regular bipartite graphs (bonus)
d-regular:

• all vertices have d incident edges
• if G is also bipartite, then m = d|L| = d|R| and so |L| = |R|

Claim

In a d-regular bipartite graph, there is a perfect matching (all vertices are matched)

13 / 20

Proof

König’s theorem: maximum size of a matching = minimum size of a vertex cover
• call r = |L| = |R|

• 1 vertex covers d edges
• 2 vertices cover at most 2d edges
• . . .
• r − 1 vertices cover at most (r − 1)d edges

• we have rd edges, so r − 1 vertices are not sufficient
• so r vertices are necessary, and also sufficient (easy), and min vertex cover has size r

14 / 20

A shipping problem
Suppliers a, b, c, d, . . . want to send stuff to a buyer z, through a network

a

b

 c

d

z

Initially, there are sa, sb, . . . units of stuff in a, b,

We take shipping time into account: a maximum of stuff should arrive before t = T .
• the amount of stuff that can leave a toward b per time unit is c(a,b), and the same for

c(a,c), . . .

• the traversal time from a to b is t(a,b), and the same for t(a,c), . . .

15 / 20

A shipping problem
Suppliers a, b, c, d, . . . want to send stuff to a buyer z, through a network

a

b

 c

d

z

t=1

t=3

t=1

t=1

t=1

t=2

Initially, there are sa, sb, . . . units of stuff in a, b,

We take shipping time into account: a maximum of stuff should arrive before t = T .
• the amount of stuff that can leave a toward b per time unit is c(a,b), and the same for

c(a,c), . . .

• the traversal time from a to b is t(a,b), and the same for t(a,c), . . .

15 / 20

A shipping problem

• previous graph is copied T + 1 times: one copy for each time step
• edges are arranged to match the time contraints
• capacities are the c(u,v)
• super-source and super-sink

Sa

Sb

Sc

Sd

a

b

c

d

z

16 / 20

A shipping problem

• previous graph is copied T + 1 times: one copy for each time step
• edges are arranged to match the time contraints
• capacities are the c(u,v)
• super-source and super-sink

Sa

Sb

Sc

Sd

a

b

c

d

z

16 / 20

A shipping problem

• previous graph is copied T + 1 times: one copy for each time step
• edges are arranged to match the time contraints
• capacities are the c(u,v)
• super-source and super-sink

Sa

Sb

Sc

Sd

a

b

c

d

z

16 / 20

A shipping problem

• previous graph is copied T + 1 times: one copy for each time step
• edges are arranged to match the time contraints
• capacities are the c(u,v)
• super-source and super-sink

Sa

Sb

Sc

Sd

a

b

c

d

z

16 / 20

A shipping problem

• previous graph is copied T + 1 times: one copy for each time step
• edges are arranged to match the time contraints
• capacities are the c(u,v)
• super-source and super-sink

Sa

Sb

Sc

Sd

a

b

c

d

z

16 / 20

Image segmentation
Segmenting an image: separating a grid P of pixels into background and foreground.

Constraints:
• single-pixel: each pixel v in P comes with integers fv and bv

• fv large: v should be in the foreground
• bv large: v should be in the background

• connectivity: for adjacent pixels v, w, there is a penalty pv,w to pay if they are not in
the same component.

Finding fv, bv, pv,w takes some work. Assuming we know them, want to find subset F
(foreground) and B = P − F (background) that maximizes

W (F) =
∑
v∈F

fv +
∑
v∈B

bv −
∑

v∈F, w∈B, (v,w) connected
pv,w.

17 / 20

Making it a min-cut problem

Step 1: turning a max into a min.
Let K =

∑
v fv +

∑
v bv (independent of the choice of F and B).

Then
K =

∑
v∈F

fv +
∑
v∈B

fv +
∑
v∈F

bv +
∑
v∈B

bv.

So
W (F, B) = K −

∑
v∈B

fv −
∑
v∈F

bv −
∑

v∈F, w∈B, (v,w) connected
pv,w.

Since K does not depend on F and B, maximizing W is the same thing as minimizing∑
v∈B

fv +
∑
v∈F

bv +
∑

v∈F, w∈B, (v,w) connected
pv,w.

18 / 20

Making it a min-cut problem

Step 2: setting up the graph G:
• vertices of G are all pixels, plus a source s and a sink t;
• edges of G:

• for all v, an edge (s, v), with capacity bv;
• for all v, an edge (v, t), with capacity fv;
• for all neighbours v, w, edges (v, w) and (w, v), with capacities pv,w.

19 / 20

Making it a min-cut problem
Step 3: understanding the cuts.
A cut (U, V = P − U) in G gives a partition of the pixels:

• the background B is U − {s},
• the foreground F is V − {t}.

What is its capacity? The edges U → V come into 3 categories:
• edges (v, t), for v in B, contributes fv to the capacity,
• edges (s, v), for v in F , contributes bv to the capacity,
• edges (v, w), for v in B and w in F , contributes pv,w to the capacity.

The capacity of the cut is∑
v∈B

fv +
∑
v∈F

bv +
∑

v∈F, w∈B, (v,w) connected
pv,w,

so solving min-cut solves the problem.
20 / 20

