CS 341: Algorithms

Lecture 18: Applications of lows and cuts

Eric Schost

based on lecture notes by many other CS341 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Fall 2024

1/20

Edge disjoint paths

2 /20

Edge disjoint paths
Problem:
® input: a directed graph, with source s and sink ¢

® output: the maximum number of edge-disjoint paths s — ¢

Cji:::;;\\\sﬁg::::

Algorithm
¢ all edges get capacity 1
e Ford-Fulkerson outputs a 0/1 flow
(0/1 flow = flow which only takes values 0 and 1)

proof: flow values are integers < 1

3/20

Edge disjoint paths
Problem:
® input: a directed graph, with source s and sink ¢

® output: the maximum number of edge-disjoint paths s — ¢

o. O

7 NI

Cl::i:ii::gé ::;;f)

Algorithm
¢ all edges get capacity 1
e Ford-Fulkerson outputs a 0/1 flow
(0/1 flow = flow which only takes values 0 and 1)

proof: flow values are integers < 1

3/20

Edge disjoint paths

Claim

There is a 0/1 flow with value k iff there are k edge-disjoint paths s — ¢ in G (using
the edges with flow 1)

Paths — flow: set flow to 1 on edges covered by paths

Flow — paths by induction: given a 0/1 flow f with N flow-1 edges, can find Val(f)
edge-disjoint paths s — ¢ in G using only flow-1 edges

OK for N =0

induction assumption: true for 0,1,...,N — 1

start from s, follow edges with flow 1

if we loop, set flow to 0 on the cycle — flow with same value and smaller N

if we get to ¢, set flow to 0 on the path — flow with value Val(f) — 1 and smaller N

4/20

Remarks
1. Runtime:

e value of the flow is at most n so runtime O(mn) if no isolated vertex,
O((m + n)n) otherwise

2. Edge version of Menger’s theorem (from max flow = min cut)

® max number of edge-disjoint paths s — ¢ = min number of edges to remove if we
want to ensure there is no path s — ¢

o. O

7 NI

O—> —>0

S

e cxercise: fill in the details

5/20

Remarks
1. Runtime:

e value of the flow is at most n so runtime O(mn) if no isolated vertex,
O((m + n)n) otherwise

2. Edge version of Menger’s theorem (from max flow = min cut)

* max number of edge-disjoint paths s — ¢t = min number of edges to remove if we
want to ensure there is no path s — ¢

e cxercise: fill in the details

3. Vertex-disjoint paths
e transform the graph and find edge-disjoint paths
OGN YN

e/ <2n,m' <m-+n 5/20

Bipartite matching

6/20

Example

Context: students and professors:
® cach professor offers one internship, but not all students may be eligible;

® cach student wants one internship, and is ready to go for any of them.

Example: 3 students and 3 professors.

P; will only consider S; and S
P, will only consider Sy
P5 will only consider S; and Ss

How to find the best matching?

7/20

Bipartite graphs

a (symmetric) graph G whose vertices are split into two groups S; and P;, with no
edge between S;’s, or between P;’s.

Can be turned into a weighted directed graph G’, adding a source and a sink

G

8/20

Bipartite graphs

a (symmetric) graph G whose vertices are split into two groups S; and P;, with no
edge between S;’s, or between P;’s.

Can be turned into a weighted directed graph G’, adding a source and a sink

8/20

In general

Bipartite matching:
® a set of 7 edges (between the S; and the P;) with no common vertex, i.e.,

® vertices Sp,,...,Sm, and Py, ..., Py, such that S,,, is connected to P,

™

How to find one: set up a flow problem as before
® a matching of size r gives a 0/1 flow of value r
® a 0/1 flow of value r gives a matching of size r as in edge-disjoint paths
(using 1s instead of cos, this is edge-disjoint paths)

¢ Ford-Fulkerson’s algorithm returns a 0/1 flow

Runtime: n + 2 vertices, m + n edges so O((m + n)n)

9/20

Minimum vertex cover

Definition

G = (V, E) is a symmetric graph

® a vertex cover C' is a subset of vertices that contains an extremity of every edge

C' vertex cover iff V' — C independent set (no vertices in it are directly connected)

e want C' as small as possible

Complexity
e trees: dynamic programming (for independent sets)
® bipartite graphs: min cut

® general graphs: NP-hard

10/ 20

Konig’s theorem

in a bipartite graph, maximum size of a matching = minimum size of a vertex cover

take a matching of maximum size r

All vertex covers have size at least r

® need at least r vertices to cover these edges

Proof of =
® max flow has value r in G’
® max flow = min cut: there is a cut A, B =V — A of capacity r in G’

® yse it to find a vertex cover of size r

11/20

Konig's theorem

A
B

12/20

Konig's theorem

A
B
O c

12/20

Konig’s theorem

Define C = (LN B) U (RN A)

12 /20

Konig’s theorem

O1 1

N\
N J

Define C = (LN B) U (RN A)
® there are no edges blue in L — red in R (they have infinite capacity)
® so (' is a vertex cover in G

® and r = c¢(A) = |(edges s = C)| + |(edges C — t)| = |C|
12 /20

Special case: d-regular bipartite graphs (bonus)

d-regular:
e all vertices have d incident edges
e if G is also bipartite, then m = d|L| = d|R| and so |L| = |R)|

O
O
R

13 /20

Special case: d-regular bipartite graphs (bonus)

d-regular:
e all vertices have d incident edges
e if G is also bipartite, then m = d|L| = d|R| and so |L| = |R)|

@)
O
L R

Claim

In a d-regular bipartite graph, there is a perfect matching (all vertices are matched)

13 /20

Special case: d-regular bipartite graphs (bonus)

d-regular:
e all vertices have d incident edges
e if G is also bipartite, then m = d|L| = d|R| and so |L| = |R)|

@)
O
L R

Claim

In a d-regular bipartite graph, there is a perfect matching (all vertices are matched)

13 /20

Proof

Konig’'s theorem: maximum size of a matching = minimum size of a vertex cover
e call r = |L| = |R|
® 1 vertex covers d edges

® 2 vertices cover at most 2d edges
. ..

e r — 1 vertices cover at most (r — 1)d edges
® we have rd edges, so r — 1 vertices are not sufficient

® so r vertices are necessary, and also sufficient (easy), and min vertex cover has size r

14 /20

A shipping problem

Suppliers a, b, ¢, d, ... want to send stuff to a buyer z, through a network

CD-—-___,____*‘.

0/4\'/

Initially, there are sg, sp, - .. units of stuff in a,b,....

We take shipping time into account: a maximum of stuff should arrive before t = T.
® the amount of stuff that can leave a toward b per time unit is c(q), and the same for
Cla,c)s -+
® the traversal time from a to b is t(,), and the same for (4), . . -

15 /20

A shipping problem

Suppliers a, b, ¢, d, ... want to send stuff to a buyer z, through a network

Initially, there are sg, sp, - .. units of stuff in a,b,....

We take shipping time into account: a maximum of stuff should arrive before t = T.
® the amount of stuff that can leave a toward b per time unit is c(q), and the same for
Cla,c)s -+
® the traversal time from a to b is t(,), and the same for (4), . . -

15 /20

A shipping problem

® previous graph is copied T + 1 times: one copy for each time step

® cdges are arranged to match the time contraints

capacities are the c(y)

® super-source and super-sink
a

@ @ @—0
Sa

b

@ @—0
Sb
c
Sc .

sd u@? O O 0O

16/ 20

A shipping problem

® previous graph is copied T + 1 times: one copy for each time step

® cdges are arranged to match the time contraints

capacities are the c(y)

® super-source and super-sink

16/ 20

A shipping problem

® previous graph is copied T + 1 times: one copy for each time step
® cdges are arranged to match the time contraints
® capacities are the c(y)

® super-source and super-sink

16/ 20

A shipping problem

® previous graph is copied T + 1 times: one copy for each time step
® cdges are arranged to match the time contraints
® capacities are the c(y)

® super-source and super-sink

16/ 20

A shipping problem

® previous graph is copied T + 1 times: one copy for each time step
® cdges are arranged to match the time contraints
® capacities are the c(y)

® super-source and super-sink

16/ 20

Image segmentation

Segmenting an image: separating a grid P of pixels into background and foreground.

Constraints:
® single-pixel: each pixel v in P comes with integers f, and b,

e f, large: v should be in the foreground
® p, large: v should be in the background

® connectivity: for adjacent pixels v, w, there is a penalty p, ., to pay if they are not in
the same component.

Finding f,, by, pv,w takes some work. Assuming we know them, want to find subset I’
(foreground) and B = P — F' (background) that maximizes

WE) = S f + b -) Do,

vEF vEB vEF, weB, (v,w) connected

17 /20

Making it a min-cut problem

Step 1: turning a max into a min.

Let K =%, fu + >, by (independent of the choice of F' and B).

Then
K:va+2fv+zbv+zbv
veEF vEB veEF vEB
So
W(F,B) = K - va - va - Z pv,w-
vEB vEF vEF, weB, (v,w) connected

Since K does not depend on F' and B, maximizing W is the same thing as minimizing

Sfo+ D by + > Pow-

vEB veEF vEF, weB, (v,w) connected

18 /20

Making it a min-cut problem

Step 2: setting up the graph G:
e vertices of GG are all pixels, plus a source s and a sink ¢;
® edges of G:
e for all v, an edge (s,v), with capacity b,;
e for all v, an edge (v,t), with capacity f;
e for all neighbours v, w, edges (v, w) and (w,v), with capacities py 4.

.ll.

19/ 20

Making it a min-cut problem
Step 3: understanding the cuts.
A cut (U V =P —U)in G gives a partition of the pixels:
e the background B is U — {s},
e the foreground F is V — {t}.
What is its capacity? The edges U — V come into 3 categories:
® edges (v,t), for v in B, contributes f, to the capacity,
® edges (s,v), for v in F, contributes b, to the capacity,

® edges (v,w), for v in B and w in F, contributes p, ., to the capacity.

The capacity of the cut is

Sofo+ D by + > Pows

vEB veEF vEF, weB, (v,w) connected

so solving min-cut solves the problem.

20 /20

