
CS 341: Algorithms

Lecture 19: Reductions

Éric Schost
based on lecture notes by many other CS341 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Fall 2024

1 / 19



Goals for this chapter

• polynomial-time reductions
• P, NP, NP-complete problems
• Cook-Levin: CircuitSAT is NP-complete
• many more examples of NP-complete problems

2 / 19



Framework

3 / 19



Computational model
So far,

• we used the word RAM all the time (CPU has registers that are as large as needed)
• we only counted how many word operations we did (unit cost)

This is not well-suited to discuss P, NP, . . .

• use a bit-model instead, where words have fixed size (e.g., 1 bit)
(Cook-Levin’s theorem proved for Turing machines)

• main difference: should account for the size of integers we represent
(the size of the representation of an integer N is ⌈log(N)⌉ + 1 ∈ Θ(log N))

• in most cases, runtimes now involve a few extra log terms

does not matter: when talking about P, NP, . . . , we care about polynomial-time-ness,
but not about precise exponents, log factors, . . .

4 / 19



Input size?

when talking about P, NP, . . . , we care about polynomial-time-ness, but not about
precise exponents, log factors, . . .

Example 1: input is an integer M

• size sz(M) = ⌈log(M)⌉ + 1 ∈ Θ(log M)

Example 2: input is an array A[1..n] of integers
• size S =

∑
i sz(A[i])

• might as well consider S′ = n max log(A[i]): T ∈ SO(1) ⇐⇒ T ∈ S′O(1)

1. S ∈ O(S′)
2. S ≥ n and S ≥ max log(A[i]) so S ≥

√
S′

5 / 19



Input size?

when talking about P, NP, . . . , we care about polynomial-time-ness, but not about
precise exponents, log factors, . . .

Example 3: graph G = (V, E) with n vertices and m edges
• array A[1..n], each A[i] a list of indices vi,j , j = 1, . . . , degree(i)
• size S = n +

∑
i,j sz(vi,j)

• might as well consider S′ = n + m

Example 4: directed graph G = (V, E) with n vertices and m edges, with integer weights w:
• array A of size n

• each A[i] a list of pairs (vi,j , wi,j), j = 1, . . . , out-degree(i)
• size S = n +

∑
i,j sz(vi,j) + sz(wi,j)

• might as well consider S′ = n + m max log(w)
5 / 19



What problems do we consider?
Definition.

• a decision problem is a problem to which the answer is yes or no
• write x ∈ Prob if x is a yes-instance

formally, Prob is a language (a set of strings over e.g. {0,1})

Examples
• is graph G a tree? G ∈ Tree
• is graph G colorable with 3 colors? G ∈ 3-Colorable

Non-examples
• what is the maximum flow through this graph?
• find an assignment of variables that makes a boolean formula true

6 / 19



Optimization vs decision
Optimization problems

• find the maximal flow value in G

• find a minimal spanning tree in G

• optimize a linear function . . .

Decision versions of optimization problems:
• given G and K, is there a flow of value ≥ K?
• given G and K, is there a spanning tree of weight ≤ K?
• etc.

Remark
• optimization problem solvable in polynomial time =⇒ decision version solvable in

polynomial time
• converse true if the optimum is an integer that fits into a polynomial number of bits

7 / 19



Reductions

8 / 19



Definition
formalizes the idea that you can use subroutines to solve new problems.

Key idea:
• if you can solve a problem Prob2 in polynomial time,
• you may use it to solve Prob1 in polynomial time.

Definition

Prob1 can be polynomial-time reduced to Prob2 if
• there exists an algorithm C that runs in polynomial time,
• such that x ∈ Prob1 if and only if C(x) ∈ Prob2.

Notation: Prob1 ≤P Prob2.

Remark: also called Karp reductions. Alternative: use Prob2 as an oracle, allowing
multiple calls (Cook reductions).

9 / 19



Complexity
Assume

• C runs in time c(n), n = size(input)
in particular, the output has size at most c(n)

• we have an algorithm A2 that solves Prob2 in time a(m), m = size(input)

Consequence
• we get algorithm A1 that solves Prob1 in time c(n) + a(c(n))

(because size of C(x) ≤ c(n))
• so polynomial time for Prob2 =⇒ polynomial time for Prob1

Contrapositive

no polynomial time algorithm for Prob1 =⇒
aaaaaaaaaaaaaaaaaaaaaaddddno polynomial time algorithm for Prob2

10 / 19



Examples

Prob1 Prob2
subset sum decision version of 0/1 knapsack

(is there a choice of items with value ≥ K?)

longest increasing subsequence longest common subsequence
(decision version) (decision version)

vertex-disjoint paths edge-disjoint paths
(decision version) (decision version)

(all reductions take polynomial time)

11 / 19



Some graph problems

IndependentSet
• given a graph G and K, is there an independent set of size at least K in G?

independent set: vertices S with {u, v} not an edge for all u, v in S

VertexCover
• given a graph G and K, is there a vertex cover of size at most K in G?

vertex cover: vertices S s.t. any edge has an extremity in S

Clique
• given a graph G and K, is there a clique of size at least K in G?

clique: vertices S with {u, v} edge for all u, v in S (u ̸= v)

12 / 19



Some easy reductions

Let Ḡ = (S, Ē) be the complement graph of G: e ∈ E ⇐⇒ e /∈ Ē

Claim 1

S is an independent set in G iff S is a clique in Ḡ

13 / 19



Some easy reductions

Claim 2

S is an independent set in G iff V − S is vertex cover in G

14 / 19



Some easy reductions

Claims give
• IndependentSet ≤P Clique ≤P IndependentSet
• IndependentSet ≤P VertexCover ≤P IndependentSet

Transitivity: if A ≤P B and B ≤P C, then A ≤P C

Consequence

IndependentSet ≤P VertexCover ≤P Clique ≤P IndependentSet

(they are polynomial-time equivalent)

15 / 19



Hamiltonian paths and cycles

HamiltonianPath
• given a (symmetric) graph G with n vertices, is there a path v1, . . . , vn that visits all

vertices?

HamiltonianCycle
• given a (symmetric) graph G with n vertices, is there a cycle v1, . . . , vn, v1 that visits

all vertices?

Remark:
• if there is a Hamiltonian cycle, there is a Hamiltonian path
• but converse may not hold

16 / 19



HamiltonianPath ≤P HamiltonianCycle
Given G, create G′ by adding a new vertex s connected to all other vertices

Claim

G ∈ HamiltonianPath ⇐⇒ G′ ∈ HamiltonianCycle

• v1, . . . , vn Hamiltonian path in G =⇒ s, v1, . . . , vn, s Hamiltonian cycle in G′

• if there is a Hamiltonian cycle in G′, we can write it s, v1, . . . , vn, s

then v1, . . . , vn Hamiltonian path in G

Remark: reduction takes polynomial time

17 / 19



HamiltonianCycle ≤P HamiltonianPath
Given G, create G′ by choosing one vertex s and using a gadget:

Remark: reduction in polynomial time.

18 / 19



HamiltonianCycle ≤P HamiltonianPath
Claim

G ∈ HamiltonianCycle ⇐⇒ G′ ∈ HamiltonianPath

• if there is a Hamiltonian cycle in G, we can write it s, u, . . . , w, s

=⇒ t′, s′, u, . . . , s′′, t′′ Hamiltonian path in G′

• if there is a Hamiltonian path in G′, we can write it t′, s′, u, . . . , w, s′′, t′′ or
t′′, s′′, u, . . . , w, s′, t′

=⇒ s, u, . . . , s Hamiltonian cycle in G

19 / 19


