CS 341: Algorithms

Lecture 20: Reductions, P, NP, co-NP

Eric Schost

based on lecture notes by many other CS341 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Fall 2024

1/19

More examples of Karp reductions

2/19

Circuit satisfiability
CircuitSAT.

e instance: a circuit = DAG with labels on the vertices

inputs labelled by boolean variables z1,...,z, or 0,1

internal vertices labelled by and, or, not

there is a marked vertex v for the output

problem: is there a choice of boolean x; that makes v true?

() ¥
o
®» ® O

3/19

k-terms conjonctive formula satisfiability
kSAT.

® instance: a boolean formula in n variables x1,...,z, in CNF

(Y1 V- Vyre) A o A (Yea Ve Viyek,)

with literals y; ; of the form x,,, Tp;, 1 or 0 and k; <k

® problem: is there a choice of the variables that makes it true?
Remark 1: in clause 4, can have repeated y; ; (then we only write them once)
EZVz)ANEZVY) AN(zVEVTY) k=3

Remark 2: can assume there are no constants 1 or 0

® if y; ; = 0, remove the literal, if y; ; = 1 remove the clause

Remark 3: key cases are k = 2 and k = 3

4/19

CircuitSAT <p 3SAT

Reduction:
® given: circuit C with s gates, variables x1,...,x,, output v
® build: 3-CNF formula F' with O(s) clauses
e ensure: (satisfiable <= I satisfiable

Remark:
® easy to build a formula: do it for all vertices bottom-up

® not polynomial, not 3CNF

>e 8 e

((x1 Ax2) A (1 Axz2)) A ((z1 Ax2) A (21 A x2))

5/19

CircuitSAT <p 3SAT

Reduction:

® given: circuit C with s gates, variables x1,...,x,, output v
® build: 3-CNF formula F' with O(s) clauses
e ensure: (satisfiable <= I satisfiable

Key idea: introduce one new variable y; per non-input gate and use
Y=z <= (z = y)AN(yi = 2) <= (i VZ)A(TiV 2)
® and gate: z=tAu,andsoz=1tVu
(i VEVO) A @V (EAW) = (g VEVE) A (T V) A (T V u)

® orgate: z =tV ugives (i VI) A(yi VT) A (i VEV u)
® not gate: z = ¢ gives (y; Vt) A (g; V t)

5/19

CircuitSAT <p 3SAT
Ng
i Y
N
® ® ®

(1= (@1 A22)) A (y2=(22Va3)) A (v=_(y1Ay2)) N v

gives

and

(y1 Vo Aze) A (T V(o1 Ax2)) A
(Y2 Ve Vag) A (J2V (v2Va3)) A
(vVyr Aya) A (TV (y1 Aye)) A o

given C, F can be constructed in polynomial time 6/ 19

CircuitSAT <p 3SAT
Ng
i Y
N
® ® ®

(1= (@1 A22)) A (y2=(22Va3)) A (v=_(y1Ay2)) N v

gives

and

F=@pVvoivezz) A (TaVa) A [TV a) A
(y2VT2) AN (y2VT3) A (T2Vx2Vas) A
(VT VT) A (TVy) AN (TVy) A

given C, F can be constructed in polynomial time 6/ 19

Aside: polynomial-time Turing reductions

7/19

A stronger form of reduction

Consider two problems PROB1, PROB2, not necessarily decision problems

Definition
PROBI1 is polynomial-time Turing reducible to PROB2 if there is an algorithm that
solves PROB1 using

® a polynomial number of operations

® a polynomial number of calls to a solver (oracle) for PROB2

Remark:
® inputs/output transfers to/from the oracle count as “operations”

® so all inputs to the oracle have polynomial size

Notation:
e Prosl <% ProB2

8/19

Examples and key property

Example 1

¢ reducing an optimization problem to its decision version (if optimal is an integer of
polynomial size)

Example 2

e Karp reductions for decision problems (only one oracle call, at the end)

Claim

if PrROB1 §£ PrROB2 and PROB2 can be solved in polynomial time, then it’s also the
case for PROB1

Proof: same as for Karp reductions

9/19

Example: factoring

Effective version: FACTOR
® input: integer M input size O(log M)

® output: the prime factors of M

Decision version: HASFACTOR
® input: integers M and 0 < k < M input size O(log M)
® output: yes iff M has a prime factor < k

Remark: polynomial time = log(M)°™)

HasFacTor <% Factor

Proof: factor M and check
10 / 19

Example: factoring
Claim 2:

Factor <E HasFAcTOR

1. Find the first ¢ such that M has a prime factor between 2¢ and 21 — 1
e testall £ =1,2,3,...,log(M) O(log M) calls to HASFACTOR with inputs < M
e if all no, M is prime, done

2. Find the smallest factor between 2¢ and 21 — 1
® binary search O(log M) calls to HASFACTOR with inputs < M

3. We found one prime factor P. Repeat on M /P

® log M prime factors at most

Conclusion: if HASFACTOR can be solved in polynomial time, we can factor integers in
polynomial time.

11/19

P, NP, co-NP

12 /19

The classes P and NP

Definition

P is the set of decision problems that can be solved in polynomial time
NP is the set of decision problems where yes-instances can be certified in polynomial
time.

Precisely, a decision problem PROB is in NP if

e there exists an algorithm B (a certifier) that takes as input an instance z and an extra
input y (a certificate) and outputs “yes” or “no” in polynomial time in size(z)+size(y)

® 1 yes-instance for PROB if and only if there exists y of size polynomial in size(z), such
that B(z,y) =“yes”

13/ 19

Remarks

1. if we can solve PROB in polynomial time, we can certify it as well (with an empty

certificate) so
P C NP

$1,000,000 question: P = NP?
2. NP means Non-deterministic Polynomial time
® nothing to do with randomized algorithms

® non-deterministic Turing machines have several transitions available each step

® existence of one accepting path ~ existence of a certificate

14 /19

Examples

Independent set
® instance: graph G, integer K
® certificate: a set S of vertices
e certification: test if |S| > K and S independent

Vertex cover
® instance: graph G, integer K
e certificate: a set S of vertices
® certification: test if |S| < K and S covers all edges

Clique
® instance: graph G, integer K
e certificate: a set S of vertices
e certification: test if |S| > K and S clique

15/ 19

Examples

Circuit sat
® instance: boolean circuit C
® certificate: a sequence x of bits

e certification: test if C'(z) = true

3SAT
® instance: a boolean formula F' in 3CNF
® certificate: a sequence x of bits

e certification: test if F'(z) is true

SAT
® instance: a boolean formula F'
® certificate: a sequence x of bits
e certification: test if F'(z) is true

16 /19

Examples

Hamiltonian cycle
® instance: graph G
® certificate: a sequence S of vertices

e certification: test if S is a Hamiltonian cycle in G

Hamiltonian path
® instance: graph G
® certificate: a sequence S of vertices

e certification: test if S is a Hamiltonian path in G

Factors
® instance: integers M and 0 < k < M
® certificate: integer P
e certification: test if P is prime, P divides M and P < k

17 /19

co-NP

co-NP is the set of decision problems whose no-instances can be certified in polynomial
time.

Remark: most problems so far are thought to not be in co-NP
e certify that a formula not satisfiable?
e certify that a graph has no Hamiltonian path?
® but HASFACTOR is in co-NP (certificate = all prime factors)

If a single NP-complete problem is in co-NP, NP=co-NP
(so doubtful that HASFACTOR is NP-complete)

18 /19

x

& google.com/m

&7t i}
Image capture: May

