
CS 341: Algorithms

Lecture 21: NP-completeness

Éric Schost
based on lecture notes by many other CS341 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Fall 2024

1 / 24

Aside: the rock’s statement

2 / 24

NP ∩ co-NP
These are the problems where we can certify both yes and no instances efficiently.

MaxFlowDecision:
• input: integer-weighted graph G, source s, sink t, K

• output: is there a flow of value at least K?

MinCutDecision:
• input: integer-weighted graph G, source s, sink t, K

• output: is there a cut of capacity at most K?

Claim: max flow = min cut =⇒ both problems in NP ∩ co-NP
• MaxFlowDecision is NP

certificate that there is flow of value at least K: a flow of value at least K

• MaxFlowDecision is co-NP
certificate that there is no flow of value at least K: a cut of capacity at most K − 1

3 / 24

NP ∩ co-NP = P?
Flow and cuts

• in P! (Edmonds-Karp)

Linear programming
• optimize a linear function while satisfying linear inequalities
• also have a max (something) = min (something else), so NP ∩ co-NP
• in P!! (ellipsoid)

Primality
• certificates for non primes (easy) and for primes (not so easy), so NP ∩ co-NP
• in P!!! (AKS)

Factoring
• HasFactor is in NP ∩ co-NP
• ?

4 / 24

NP-completeness

5 / 24

NP-complete problems
Definition

A decision problem Prob is NP-complete if
• Prob is in NP
• for any Prob’ in NP, Prob’ ≤P Prob

polynomial time for Prob would give P=NP (so polynomial time for SAT,
IndependentSet, VertexCover, Clique, . . .)

Remark: NP-hard problems = the second part of the definition
• decision problem Prob such that for any Prob’ in NP, Prob’ ≤P Prob

Exercise

find an NP-hard problem that is provably not in NP

6 / 24

The Cook-Levin theorem

Claim

CircuitSAT is NP-complete

Remark 1: we already know it is in NP

Remark 2:
• we proved CircuitSAT ≤P 3SAT
• so 3SAT is NP-complete (it is in NP)
• we won’t use CircuitSAT too much after that

7 / 24

World map

8 / 24

World map

8 / 24

Sketch of proof
take Prob in NP (so there is a certifying algorithm B), want Prob ≤ CircuitSAT
; must transform an instance x of Prob into a circuit

Idea
• given x, verification algorithm B(x, y) can be turned into a circuit with y as input
• we call CircuitSAT to find y

Example
• problem Prob: IndependentSet
• instance x: complete graph with 3 vertices (aka a triangle), K = 2
• certificate y: 3 bits y1, y2, y3 (yes/no for each vertex)
• circuit for B(x, y) computes the “formula”

(y1 + y2 + y3 ≥ 2) ∧ y1 ∧ y2 ∧ y1 ∧ y3 ∧ y2 ∧ y3

9 / 24

Sketch of proof

Turing machines
• RAM model too complicated, use Turing machines instead
• have a pointer to memory and a state (≃ line in the source code)
• each step, pointer can write a new symbol, move left / right and change state

From machine to circuit
• on input bit vector x of size n, introduce a large table T of size nk × nk (k=exponent

in runtime of B)
• cell (i, j) records contents of jth memory cell at time i, whether the pointer was

there, and the machine state
• cells at row i + 1 are given by a boolean circuit taking row i as input (big, but

polynomial size)
• output of the circuit = output of the Turing machine at the last time step

10 / 24

Some NP-complete problems

• CircuitSAT
• 3SAT, SAT
• independent set, vertex cover, clique
• (directed) Hamiltonian cycle, Hamiltonian path
• traveling salesman
• subset sum, 0/1 knapsack

(2SAT is polynomial time)

11 / 24

IndependentSet, VertexCover, Clique are NP-complete

We already know they are in NP

Claim

3SAT ≤P IndependentSet

Reduction (transform an instance F of 3SAT with s clauses into an independent set
instance)

• build a graph G with one vertex per literal
• connect all literals in any given clause
• connect all pairs xi, xi

Remark: reduction takes polynomial time

12 / 24

World map

13 / 24

Example

A 3CNF formula with s = 3

F = (x1 ∨ x2) ∧ (x2 ∨ x3 ∨ x1) ∧ (x1 ∨ x3 ∨ x2).

14 / 24

Proof

Claim

F satisfiable iff G has an independent set of size at least s

If F satisfiable
• pick one true literal in each clause as set S, so |S| = s

• no edge within clauses
• no edge {xi, xi} either

If G has an independent set S of size at least s

• S has (exactly) one vertex per clause
• make these literals true (for any variable we did not assign, arbitrary choice)
• no conflict, because any xi, xi cannot be both in S

15 / 24

DirectedHamiltonianCycle, HamiltonianCycle, HamiltonianPath
are NP-complete

Definition: DirectedHamiltonianCycle
• input: directed graph G

• output: does G have a directed cycle that visits each vertex once?
• NP

Claim

3SAT ≤P DirectedHamiltonianCycle ≤P HamiltonianCycle

start with 3SAT ≤P DirectedHamiltonianCycle, so we are given a formula in 3CNF

(Remark: almost the same construction works for DirectedHamiltonianPath)

16 / 24

World map

17 / 24

Starting the construction

Rules
• source s, sink t

• one row of vertices per variable xi

• on row i, 2 outside vertices (black) and 2
vertices vi,j,1, vi,j,2 per clause Cj

• example with (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2)
(we’re not done yet)

Remark:
• enough to consider only the xi’s that show up in our formula
• so we can assume n ∈ O(ℓ) (ℓ = number of clauses)
• size of the graph and construction time polynomial in nℓ 18 / 24

Hamiltonian cycles = variable assignments
convention: T = left to right, F = right to left

so far, 2n Hamiltonian cycles

19 / 24

Hamiltonian cycles = variable assignments
convention: T = left to right, F = right to left

so far, 2n Hamiltonian cycles

19 / 24

Using the clauses to finish the graph
For any clause Cj

• add a new vertex, also called cj

• for any literal xi in Cj , add edges (vi,j,1, cj) and (cj, vi,j,2)
• for any literal xi in Cj , add edges (cj, vi,j,1) and (vi,j,2, cj)

c1 = (x1 ∨ x2 ∨ x3)

20 / 24

3SAT ≤P DirectedHamiltonianCycle
Claim

if formula sastisfiable, there is a directed Hamiltonian cycle in G

• variable assignment =⇒ direction (LtoR for true or RtoL for false) on each row
• choose one literal x or x̄ set to true per clause Cj

• detour to visit cj when we go through the corresponding row
(if x true we go LtoR, if x false we go RtoL)

c1 = x1 ∨ x2 ∨ x3
x1 = x2 = x3 = T

21 / 24

3SAT ≤P DirectedHamiltonianCycle
Claim

if directed Hamiltonian cycle in G, formula sastisfiable

Key Observation: if cycle goes from vi,j,1 to cj , must come back to vi,j,2 (else, cannot put
vi,j,2 on the cycle), same with vi,j,2 → cj → vi,j,1

22 / 24

3SAT ≤P DirectedHamiltonianCycle
Claim

if directed Hamiltonian cycle in G, formula sastisfiable

Key Observation: if cycle goes from vi,j,1 to cj , must come back to vi,j,2 (else, cannot put
vi,j,2 on the cycle), same with vi,j,2 → cj → vi,j,1

Consequences
• if we remove all vertices cj from our cycle, we get a cycle on the clause-free graph
• so each row is visited LtoR or RtoL
• gives an assignment for x1, . . . , xn

• by design, it satisfies all clauses

22 / 24

DirectedHamiltonianCycle ≤P HamiltonianCycle

Reduction
• given: a directed graph G

• build: an undirected graph G′

• ensure: directed Hamiltonian cycle in G ⇐⇒ Hamiltonian cycle in G′

Gadget:
• replace each vertex v by vin, vmid, vout
• make all edges undirected

23 / 24

DirectedHamiltonianCycle ≤P HamiltonianCycle
Claim

directed Hamiltonian cycle in G ⇐⇒ Hamiltonian cycle in G′

Proof
• if directed Hamiltonian cycle in G, Hamiltonian cycle in G′ (follow the cycle)
• suppose Hamiltonian cycle in G′. Can only have

but not

(vmid would be isolated)
gives a directed Hamiltonian cycle in G

24 / 24

