
CS 341: Algorithms

Lecture 23: Misc

Éric Schost
based on lecture notes by many other CS341 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Fall 2024

1 / 24

EXP and beyond

2 / 24

Exponential time

Definition

EXP is the set of decision problems that can be solved in exponential time 2O(size(x)k)

for some k.

Observation: NP ⊂ EXP so problems in NP cannot be extraordinarily bad

Idea: brute-force, try all possible certificates
• for a given x, we look for a certificate of size size(x)k, for some constant k

• if we work with binary symbols, there are 2size(x)k certificates
• each of them takes polynomial time

3 / 24

Bounded halting

Definition
• instance: program / Turing maching P , input x to P , integer t

• output: does P (x) stop on input x within t steps?
• remark: input size = size(P) + size(x) + log t

Claim

BoundedHalting is in EXP

Proof (sketch)
• use a universal Turing machine, run the simulation for t steps
• runtime polynomial can be made polynomial in size(P), t

• which is exponential in the input size

4 / 24

EXP-completeness

Claim

BoundedHalting is EXP-complete

Proof
• take decision problem Prob in EXP
• so there is a program / Turing machine P that decides Prob(x) using at most

2c size(x)k operations (c, k constants)
• modify P to make it run forever if input no-instance, call P ′ the result
• reduction: on instance x, call BoundedHalting with input P ′, x and t = 2c size(x)k

• P ′ is fixed, x is x and log t = c size(x)k, so this is polynomial in size(x)

Remark: because NP ⊂ EXP, this shows BoundedHalting is NP-hard

5 / 24

Time hierarchy

Time hierarchy theorem (particular case)

P ̸= EXP

Proof: take CS360

Consequence

BoundedHalting is not in P

Proof:
• if it was, using EXP ≤P BoundedHalting, we would get P=EXP

6 / 24

Even worse
HALTING

• instance: program / Turing maching P , input x to P

• output: does P (x) stop on input x?
• remark: input size = size(P) + size(x)

1. Undecidable (CS245, CS360), so in particular not in NP

2. RE-hard (so in particular NP-hard, and not NP-complete)
• take a recursively enumerable problem Prob
• meaning: there is a program / Turing machine P st Prob(x) returns true for

yes-instances, and either loops or returns false for no-instances
• modify P to make it run forever if input no-instance, call P ′ the result
• reduction: on instance x, call Halting with input P ′, x

• P ′ is fixed, x is x, so this is polynomial in size(x)
7 / 24

Variants of kSAT

8 / 24

Definitions
kSAT

• instance: a boolean formula in n variables x1, . . . , xn in CNF

(y1,1 ∨ · · · ∨ y1,k1) ∧ · · · ∧ (yℓ,1 ∨ · · · ∨ yℓ,kℓ
)

with literals yi,j of the form xm, xm and ki ≤ k

• problem: is there a choice of the variables that makes it true?

EXACT-kSAT
• same as above, but with exactly k literals (repetitions OK)

UNIQUE-kSAT
• same as above, but with exactly k literals and no repeated variable
• for k = 3, x ∨ y ∨ z OK, x ∨ x ∨ z not OK, x ∨ x ∨ z not OK

9 / 24

Equivalence
Claim

exact-kSAT ≤P kSAT ≤P exact-kSAT

Proof:
1. an exact-kSAT instance is a kSAT instance
2. transform x ∨ y into x ∨ x ∨ y

Claim

unique-kSAT ≤P kSAT ≤P unique-kSAT

Proof:
1. a unique-kSAT instance is a kSAT instance
2. transform x ∨ y into (x ∨ y ∨ dummy) ∧ (x ∨ y ∨ dummy)

10 / 24

2SAT and MAX-2SAT

11 / 24

2SAT is in P
Remark: any kSAT is in NP

• instance: formula F in kCNF
• certificate y: boolean values for the variables that appear in F

• algorithm B(F, y): test if F (y) is true (i.e. if all clauses are true)
• NP? yes! B runs in polynomial time, and F is satisfiable iff there exists a certificate

of size ≤ size(F)

We know: 3SAT NP-complete (and so kSAT as well, for k ≥ 3)

Claim:

2SAT in P

Proof: we start from a formula F in 2CNF that has s clauses

assume all clauses have 2 literals
12 / 24

Introducing a graph
Idea: xi ∨ xj is equivalent to

xi =⇒ xj and to xj =⇒ xi

• we can chain these implications to eventually find out a satisfiable solution
• so we put them in a directed graph G (with vertices labeled xi and xi)

Example
(x1 ∨ x2) ∧ (x2 ∨ x1) ∧ (x3 ∨ x2)

gives

13 / 24

How to use the graph

Observation: suppose booleans y1, . . . , yn satisfy F

• assigns boolean values to all vertices
• if vertex v is true and v → w edge, w true because v ∨ w clause in F

• so if v is true and v ; w path, w true

Consequence: if some xi, xi are in the same SCC of G, F not satisfiable

Decision algorithm:
• construct G (at most 2s vertices and 2s edges)
• find the SCCs of G (= put indices on vertices)
• if any xi, xi that appear in F have the same index, return false
• else, return true

Runtime: O(s) in the word RAM model, polynomial in s log n in the bit model

14 / 24

Proof + finding satisfying assignments
Algorithm, cont. (assuming true)

• contract the SCCs of G to obtain a DAG G′

• find a topological order o on G′

• for i = 1, . . . , n

- if o(xi) < o(xi), take yi = false
- if o(xi) < o(xi), take yi = true
- if o(xi) undefined, yi arbitrary

(still polynomial time)
Claim: F (y1, . . . , yn) = true

Proof: suppose that xi ∨ xj clause not satisfied, so xi and xj assigned false
• so o(xi) < o(xi) and o(xj) < o(xj)
• (xi, xj) edge, so o(xi) ≤ o(xj) and o(xi) < o(xj)
• (xj , xi) edge, so o(xj) ≤ o(xi) and o(xj) < o(xi)

contradiction
15 / 24

MAX-kSAT
k-terms conjonctive formula satisfiability, optimization version:

• instance: a boolean formula F in n variables x1, . . . , xn in kCNF
• problem: find the maximal number of clauses that can be satisfied simultaneously

Decision version: MAX-kSAT
• instance: F as above, and an integer K

• problem: is there a choice of the variables that satisfies at least K clauses?
• certificate: boolean values for the variables that appear in F

• algorithm B: count if at least K clauses in F (y) are true

We prove: MAX-2SAT NP-complete

Exercise

we already could tell that MAX-kSAT NP-complete for k ≥ 3

16 / 24

3SAT ≤P MAX-2SAT

Preliminaries:
• consider a clause C = x ∨ y ∨ z (repeated variables OK)
• introduce a new variable t, and the 10 clauses

x, y, z, t, x ∨ y, y ∨ z, z ∨ x, x ∨ t, y ∨ t, z ∨ t

Claim

• you cannot satisfy more than 7 of these new clauses
• a boolean assignment of x, y, z, t that satisfies 7 clauses makes C true
• given a boolean assignment for x, y, z that makes C true, you can find a value

for t that satisfies 7 clauses

case discussion (discuss whether 0, 1, 2 or 3 of x, y, z are true)

17 / 24

3SAT ≤P MAX-2SAT

Reduction. Given a family F of k clauses that form a 3SAT problem, introduce
• one new variable ti per clause in F ,
• the 10 clauses as seen before (per clause in F)
• K = 7k

(takes polynomial time)

Correctness:
• you cannot satisfy more than 7k of these new clauses
• you satisfy 7k of them simultaneously if and only if you can satisfy all k input clauses

simultaneously

Conclusion: MAX-2SAT is NP-complete

18 / 24

Randomization and approximation

19 / 24

Using randomization (for the optimization problem)
MAX-UNIQUE-3SAT

• input: F in 3CNF, with 3 distinct variables per clause (works for any k)
• problem: find the maximal number of clauses that can be satisfied simultaneously
• decision version NP-complete

Claim

using in expected polynomial time in n, s, we can find an assignment that satisfies
at least 87.5% of the clauses

RandomAssignment(F)
1. F formula in 3CNF, 3 distinct variables per clause, s clauses
2. repeat
3. pick x1, . . . , xn uniformly at random in {0, 1}
4. until at least 7s/8 clauses are satisfied
5. return x1, . . . , xn

20 / 24

Analysing a single assignment

Definition: for i = 1, . . . , s, let Xi be the indicator random variable
• Xi = 0 if ith clause is not satisfied
• Xi = 1 if ith clause is satisfied

Analysis:
• clause i has 3 variables and out of the 8 possibilities, only 1 makes it false
• so p(Xi = 1) = 7/8
• so E[Xi] = 7/8

Looking at all clauses:
• the number N of satisfied clauses is

∑
i≤s Xi

• so E[N] = 7s/8

21 / 24

Overall runtime
Defining p

• let p be the probability that a random assignment satisfies at least 7s/8 clauses
• then the expected number of attempts is

p + 2p(1 − p) + 3p(1 − p)2 + · · · =
1
p

• and the expected runtime is O((n + s)/p) (in the word RAM model)

Introducing p0, . . . , ps and s′

• for j = 0, . . . , s, let pj be the probability that we satisfy j clauses
• let s′ be the largest integer less than 7s/8

Consequences
• s′ ≤ 7s/8 − 1/8
• p =

∑
j≥s′+1 pj

22 / 24

Overall runtime

7
8s = E[N]

=
∑

j

jpj

=
∑
j≤s′

jpj +
∑

j≥s′+1
jpj

≤
∑
j≤s′

s′pj +
∑

j≥s′+1
spj j ≤ s′, j ≤ s

= s′(1 − p) + sp previous slide
≤ s′ + sp 1 − p ≤ 1

≤ 7
8s − 1

8 + sp previous slide

Finally: 1/8 ≤ sp so 1/p ≤ 8s

23 / 24

Bonus

Medium: derandomize the algorithm
• assign one variable at a time
• at the beginning,

7
8s = E[N] = 1

2E[N |x1 = 0] + 1
2E[N |x1 = 1]

so one of E[N |x1 = 0] and E[N |x1 = 1] must be at least 7
8s

• both can be computed in polynomial time, choose the better one and continue

Extra hard: beat 7/8
• if there is a polynomial-time algorithm that finds a fraction 7/8 + ε of the optimal,

then P=NP

24 / 24

