
CS448/648 Database Systems Implementation Winter 2012

Setting up PostgreSQL

1 Introduction to PostgreSQL

PostgreSQL is an object-relational database management system based on POSTGRES, which was developed
at the University of California at Berkeley. PostgreSQL is an open-source descendant of this original Berkeley
code.

2 Installation of PostgreSQL

This section describes how to download, install and use PostgreSQL version 8.1.4. This is the version that
will be used for all assignments in this course.

A compressed tar archive containing the PostgreSQL version 8.1.4 source code can be found in the CS448
course account as /u/cs448/public/postgresql-8.1.4.tgz. This same archive can be downloaded via the
Web though the link that can be found on the CS448 course web page. For a more complete installation
guide, refer to the INSTALL file, which is included with the PostgreSQL source code.

You can install PostgreSQL on your own machine, or in your account in the CS student computing
environment.

2.1 Installing PostgreSQL in the CS Student Computing Environment

First, log in to a Linux server in the student.cs computing environment. The simplest way to do this is to
log in to linux.student.cs.uwaterloo.ca. This is a load balancing alias which will automatically choose
a specific Linux server to log you into. Alternatively, you can choose a specific Linux server and log in
directly to that server. A list of available Linux servers in the student computing environment can be found
at http://www.cs.uwaterloo.ca/cscf/student/hosts.shtml. Make sure you choose a Linux server.

Next, from your home directory, extract a copy of the PostgreSQL source from the course account:

tar xzf /u/cs448/public/postgresql-8.1.4.tgz

This may take a few minutes. It should create a new directory called postgresql-8.1.4 containing a
complete copy of the PostgreSQL source code.

PostgreSQL is large. You will need about 70MB of space to hold the unpacked source code. By the time
you have built and installed PostgreSQL , you will be consuming about 200MB of space. If you are registered
for CS448/648, you should have plenty of disk quota to allow you to work with PostgreSQL , provided that
you did not filled your quota with unrelated stuff! You can check your disk quota and disk usage using the
diskquota command.

In your home directory, do

mkdir pgbuild

This creates a pgbuild directory in which the PostgreSQL binaries and libraries will be placed once they
have been built. Next, cd into the postgresql-8.1.4 directory, which was created when you unpacked the
PostgreSQL distribution, and configure PostgreSQL like this:

./configure --prefix=$HOME/pgbuild CFLAGS=’-g -O0’ --enable-debug --enable-cassert --with-maxbackends=3

The two configuration arguments, --enable-debug and --enable-cassert, are used to enable debugging
of PostgreSQL code and assertions, respectively. The CFLAGS setting also simplifies debugging by turning
off compiler optimizations. Note that in the -O0 in the CFLAGS setting, the first character is an upper-case
letter O, and the second is the digit 0 (zero).

1

CS448/648 Database Systems Implementation Winter 2012

Then, build PostgreSQL by running

make

Again, this make take a few minutes. You may see warnings during the build, but it should complete
successfully.

Next, install PostgreSQL into your pgbuild directory by running:

make install

At this point, PostgreSQL has been built and installed in your $HOME/pgbuild directory. Before running
PostgreSQL commands, you will need to set your PATH and LD LIBRARY PATH environment variables so that
the PostgreSQL binaries and libraries can be found. csh and tcsh users should do this in their .cshrc file.
Look for a line like this:

setenv PATH ’/bin/showpath $HOME/bin standard’

and add $HOME/pgbuild/bin to the list, similar to this:

setenv PATH ’/bin/showpath $HOME/bin $HOME/pgbuild/bin standard’

Assuming LD LIBRARY PATH is not already being defined somewhere in the file, you should also define that
variable using a line like this:

setenv LD LIBRARY PATH $HOME/pgbuild/lib

Users of sh or bash should make similar changes in their .profile or .bashrc file. The syntax is slightly
different, but should be self-explanatory. You may need to log out and log back in again to get these
environment variable settings to take effect.

The next step is to create a directory in which to host the database and related server state:

initdb --locale=C -D $HOME/pgdb

This will initialize the database in a pgdb directory under your home directory. If you wish, you can choose
a different directory name. Don’t forget the --locale option; it is important for Assignment 1.

Last but not least, you should ensure that your copy of the PostgreSQL code is not visible to others. In
your home directory, issue the following command:

chmod 700 postgresql-8.1.4

You should now be able to start the database server. The most convenient way to run PostgreSQL is to
use two separate shell command windows. In one window, you will launch the server. In the other window,
you will run programs that issue commands to the server. To use this method, you must be logged in to the
same Linux machine in both windows. You can check which machine you are logged into in a particular
window by running the hostname command.

Once you have two command windows on the same machine, launch the PostgreSQL server in one window
using the following command:

postmaster -p <port-number> -D $HOME/pgdb

Note that because you are running the PostgreSQL server on a shared host, you have to use a port number
other than the default one to avoid conflicts with other instances of PostgreSQL initiated by other students.
This is the purpose of the -p flag. Legitimate port numbers are greater than 1024 and less than or equal
to 65536. To minimize the likelihood of conflicts, choose a random port number with 5 digits (i.e., greater
than 10000).

In the other window, you can now run PostgreSQL client programs and utilities that issue commands
to the PostgreSQL server that you just launched. You tell these client progams how to find the server by
specifying, as a command line parameter to the client, the port number that is being used by your server.

For example, you can use the createdb utility to create a new database. To create a new database named
mytest, you would use the command

2

CS448/648 Database Systems Implementation Winter 2012

createdb -p <port-number> mytest

Here, the port number that you specify must match the one with which you launched your server.
One client that you will need to use is psql, which gives you a simple, text-based command interface

that you can use to issue SQL commands to the database server, and view the results of those commands.
If you created a test database called mytest, you can launch psql on your test database like this:

psql -p <port-number> mytest

You can now use the psql client to interactively create tables, insert data, and issue queries. A sample script
that creates two tables and performs a number of queries can be found at
postgresql-8.1.4/src/tutorial/basics.source

To quit the interactive client, use the psql command \q. psql also has on-line help available, which
you can access using the \? psql command. Further documentation for psql, as well as all of the other
PostgreSQL clients, can be found in Section VI-II of the on-line PostgreSQL documentation, which is linked
to by the course web page.

When you are finished running PostgreSQL client programs, please shut down your PostgreSQL
server, so that unused servers do not clog up the student.cs Linux machines.

You can shut down your PostgreSQL server by simply typing control-C in the server’s window. The
server should output some log information indicating that it is shutting down, like this

^CLOG: received fast shutdown request

LOG: shutting down

LOG: database system is shut down

That’s all that’s necessary. You can double-check that you have no PostgreSQL servers running by using
the ps f command, which can show all of the processes that you have running on a machine. This should
give you a list of processes in a format that illustrates their parent-child relationships. The output of the ps

f command may vary a bit from machine to machine, but it should look something like this:

@linux032[125]% ps f

PID TTY STAT TIME COMMAND

56096 pts/5 Ss 0:00 -tcsh

62695 pts/5 R+ 0:00 ps f

50503 pts/3 Ss 0:00 -tcsh

50541 pts/3 S+ 0:00 postmaster -p 34543 -D /u5/kmsalem/pgdb

50546 pts/3 S+ 0:00 postmaster -p 34543 -D /u5/kmsalem/pgdb

50547 pts/3 S+ 0:00 postmaster -p 34543 -D /u5/kmsalem/pgdb

50548 pts/3 S+ 0:00 postmaster -p 34543 -D /u5/kmsalem/pgdb

32475 pts/2 Ss+ 0:00 -tcsh

or perhaps like this:

zonker2: ps f

PID TTY STAT TIME COMMAND

18002 pts/4 Ss 0:00 bash

18031 pts/4 R+ 0:00 ps f

17998 pts/3 Ss 0:00 bash

18017 pts/3 S+ 0:00 psql -p 34543 mytest

17994 pts/2 Ss 0:00 bash

18010 pts/2 S+ 0:00 postmaster -p 34543 -D ./pgdb

18012 pts/2 S+ 0:00 postgres: writer process

18013 pts/2 S+ 0:00 postgres: stats buffer process

18014 pts/2 S+ 0:00 | postgres: stats collector process

18018 pts/2 S+ 0:00 postgres: kmsalem mytest [local] idle

3

CS448/648 Database Systems Implementation Winter 2012

If you see any postmaster or postgres processes (as in the examples), you have a PostgreSQL server
running. You can kill any such servers using the kill command, specifying the process ID (PID) of the
parent postmaster process. In the first example above, the PID of the parent postmaster is 50541, so you
can kill it with:

kill -INT 50541

In the second example, the parent postmaster has PID 18010. Once you have issued the kill command,
you can use ps f again to make sure that PostgreSQL is really dead.

2.2 Installing PostgreSQL on Your Own Linux Machine

You should be able to install CS448’s version of PostgreSQL on your own Linux machine by following the
instructions for installation in the student.cs computing environment. You will not be able to extract the
PostgreSQL code directly from the course account. Instead, you can download a compressed tar archive of
the PostgreSQL source code using the link on the course web page, and then unpack your copy of the archive
using tar:

tar xzf postgresql-8.1.4.tgz

This will create the postgresql-8.1.4 directory, in which you can configure and build PostgreSQL .
If PostgreSQL fails to configure or make, it may because you are missing software packages required by

PostgreSQL . One common problem is missing readline packages. On Ubuntu, make sure you have both
libreadline and libreadline-dev installed. Other package-based Linux distributions should have similar
packages. Support for zlib may also be missing. On Ubuntu, make sure that zlib1g-dev is installed if the
PostgreSQL configuration complains about lack of zlib support.

3 Modifying PostgreSQL Source Code

Course assignments will require that you add or modify PostgreSQL source files. Before modifying Post-
greSQL files, make sure that you have a backup copy of the original file so that you can always undo your
modifications. Note that after making changes to PostgreSQL files, you should clean the built version using
make clean before rebuilding from the modified source code. This is particularly important if you have
modified header files.

Before each assignment, you should start with a fresh copy of the PostgreSQL source code. Each assign-
ment is standalone, i.e. the assignments are not incremental.

4 Debugging PostgreSQL

PostgreSQL is a client/server system, meaning that a user runs a client process, like the psql command
interpreter, which talks to a PostgreSQL server process. The main (parent) PostgreSQL server, called
postmaster, spawns a separate server process (also called postmaster) for each client connection.

There are two main methods that can be used for debugging. The first method is to print out debugging
information (e.g. variables’ values) from within the server process. The second method is to use a debugging
facility to insert breakpoints at interesting locations and inspect the variables’ values and the flow of control.

4.1 Printing Server Debugging Information

To insert debugging statements into PostgreSQL server code, use the elog() function, with the first argument
being DEBUG1. Note that elog() takes a message string as its main argument; to construct such a string
you may want to use the sprintf() routine. You’ll find examples of the use of elog() in the nbtinsert.c

file, which you will be working on for Assignment 1.
To get elog() messages to be displayed by the server, you should use the -d 1 flag when you launch the

postmaster, e.g.,

4

CS448/648 Database Systems Implementation Winter 2012

postmaster -d 1 -p <port-number> -D $HOME/pgdb

The server will display your debug messages in its log, which is normally sent to the server process’s stderr
output.

4.2 Using a Debugger

You may use any available debugger, such as gdb, to debug PostgreSQL server code. To start debugging
a PostgreSQL server process on a local machine, you first need to startup the server (i.e., postmaster),
and the client (i.e., psql). Then, you must attach the debugger to the PostgreSQL server process that is
serving your psql client. To do this using gdb, open another shell window on the same host on which
your PostgreSQL server is running. This should leave you with three separate windows: one for the
server, one for the client program (e.g., psql), and one for the debugger. In the debugger window, enter the
command:

ps f

This will give you a list of your PostgreSQL server processes. Assuming you have launched the PostgreSQL
server and one psql client, your process list should look something like this.

@linux032[126]% ps f

PID TTY STAT TIME COMMAND

56096 pts/5 Ss 0:00 -tcsh

62802 pts/5 R+ 0:00 ps f

50503 pts/3 Ss 0:00 -tcsh

50541 pts/3 S+ 0:00 postmaster -p 34543 -D /u5/kmsalem/pgdb

50546 pts/3 S+ 0:00 postmaster -p 34543 -D /u5/kmsalem/pgdb

50547 pts/3 S+ 0:00 postmaster -p 34543 -D /u5/kmsalem/pgdb

50548 pts/3 S+ 0:00 | postmaster -p 34543 -D /u5/kmsalem/pgdb

62783 pts/3 S+ 0:00 postmaster -p 34543 -D /u5/kmsalem/pgdb

32475 pts/2 Ss 0:00 -tcsh

62782 pts/2 S+ 0:00 psql -p 34543 A1test

In this example, the PostgreSQL server process that is serving the psql client is the postmaster process
with PID 62783. You can tell which postmaster process is the one serving your psql client in several ways:

• Use the ps f command before and after starting the psql command and compare the output. A new
postmaster process will have been started to serve the psql client.

• Look for the postmaster process with a PID that is larger than the PID of the psql client.

• Usually, the correct postmaster process will be the last one in the list.

The new PostgreSQL server process that is serving your psql client is the process that you will need to
connect the debugger to. In this example, its process ID (PID) is 62783.

Once you have identified the correct process id, launch the debugger:

gdb postgres

At the gdb command prompt, enter

attach <process-id>

where <process-id> is the PostgreSQL server process id that you just identified: 62783 in the example
above. Attaching gdb to the PostgreSQL server process will cause the server process to pause, so that
you can use the debugger to inspect code and variables, set breakpoints, and so on. Issue gdb’s continue

command when you are ready to let the server process continue running. If you wish to exit gdb without
killing the PostgreSQL server process, you can issue a detach command to gdb.

5

CS448/648 Database Systems Implementation Winter 2012

5 Documentation

The main source for PostgreSQL information is the official documentation, to which there is a link from the
course web page. In the source code, you will find README files within each component directory (e.g. parser,
executor and optimizer components). Comments found in the PostgreSQL code are particularly helpful in
understanding how PostgreSQL functions are implemented.

6

