
CS448/648 Database Systems Implementation Winter 2012

CS448/648 Database Systems Implementation
Assignment 3: Query Optimization

1 Introduction

The PostgreSQL query optimizer is based on bottom-up enumeration of plans. At each level, possible plans
are constructed and the best plans are kept. A plan A is considered better than a plan B if the cost of A

is less than the cost of B and the order of the output tuples of plan A is at least as “strong” as the order
of the output tuples of plan B.1 That means that there is a possibility of keeping a plan with a higher cost
whenever it has a unique ordering of resulting tuples that cannot be guaranteed by alternative plans.

In DB2, a set of “interesting orders” is constructed based on the query properties, such as the desired order
of the output, the grouping attributes, and the attributes that appear in join conditions. These interesting
orders may be beneficial to query evaluation and hence the optimizer attempts to maintain all interesting
orders at all planning levels. PostgreSQL adopts an alternative approach, which is to retain only those
interesting ordering that are available, and to enforce other orders only when needed. For example, before
performing a merge join or grouping, the optimizer inserts an explicit sort operator whenever the input
relation(s) do not have the ordering required by the merge join or grouping operator.

A drawback of this approach is that optimization opportunities could be missed because some plans are
not enumerated by the optimizer. For example, consider the query and corresponding query plan show in
Figure 1. That plan cannot be generated by the PostgreSQL optimizer. The reason is that nested loop join
operator does not require any ordering of the input relations, and thus no sort operators are inserted before
the join. Yet this plan might be a good plan for executing the query, particularly if many employees match
each department.

In this assignment, you are required to modify the PostgreSQL query optimizer so that it will generate
interesting orders more aggressively during query planning. This will allow PostgreSQL to consider plans
such as the one shown in Figure 1. Specifically, your objective is to ensure that when PostgreSQL generates
plans for single-relation subqueries, it will generate and consider plans for all interesting orders for that
single-relation subquery. PostgreSQL can generate different types of single-relation query plans, e.g., plans
using indexes or plans using sequential scans. To simplify the assignment, you are only required to generate all
interesting orders for single-relation plans that use sequential scans. PostgreSQL can generate the required
orders by adding sort operators above the sequential scan operators in these plans.

In general, PostgreSQL could aggressively generate interesting orders at all optimization levels, i.e., for
single-relation plans, for two-relation plans, for three-relation plans, and so on. For this assignment, you are
only required to do so for single-relation plans (and only those using sequential scans).

2 Sort Orders in PostgreSQL

During the planning process, the optimizer builds “Path” trees representing the different ways of executing
a query. The cheapest Path that respects the query’s required tuple ordering is selected and converted into
a Plan to pass to the executor. Each Path records the order of its output in a structure that PostgreSQL
refers to as the PathKeys for that Path. The PathKeys are represented as a list of sub-lists of PathKeyItem
nodes. The nth sublist represents the nth sort key of the result. Each sub-list identifies a set of equivalent
relational attributes. For example, consider the following query:

select e.ename

from emp e, dept d, manages m

where d.dno = m.dno and m.eno=e.eno

order by e.ename,e.eno

1Plan A’s sort order is stronger than plan B’s if B’s sort attributes are a prefix of A’s sort attributes. For example, if A is
sorted on Latitude,Longitude and B is sorted on Latitude or is not sorted at all, then A’s sort order is stronger than B’s.

1

CS448/648 Database Systems Implementation Winter 2012

NLJ

Sort
(deptname)

Index
Scan

Dept Emp

Scan
Seq

SELECT *

FROM Emp E, Dept D

WHERE E.dno=D.dno

ORDER BY D.deptname;

Figure 1: A SQL Query and Impossible Query Plan

PostgreSQL would represent the required output sort order for this query using PathKeys like this:

((e.ename) , (e.eno,m.eno))

This indicates that e.ename is the primary sort key, and that both e.eno and m.eno are the secondary
sort keys. The secondary sort key includes two attributes because PostgreSQL knows, from one of the query’s
join conditions, that the values of those two attributes will always be the same in each output tuple, i.e., the
two attributes are equivalent.

2.1 Relevant Files

Here, we describe key files that are relevant to this assignment. You may not need to modify all of these
files. However, any changes that you make must be limited to these files, as they are the only files that may
be submitted.

• src/backend/optimizer/path/allpaths.c:
This file includes routines necessary to find possible Paths for processing a query. One function of
special interest is named set plain rel pathlist. This function creates all possible sequential scan
and index scan Paths for a certain base relation. You will need to modify this function to create as
many Paths as needed to cover interesting orders.

• src/backend/optimizer/path/costsize.c:
This file includes the query operator cost functions. You will have to redefine the cost of scan paths
to include the cost of any sorting operation that is added to enforce an interesting order..

• src/include/optimizer/cost.h:
Contains function signatures and related definitions for the functions implemented in costsize.c.

• src/backend/optimizer/util/pathnode.c:
This file contains procedures to construct Paths. You may wish to modify the function responsible for
creating access paths to include any necessary information.

• src/include/optimizer/pathnode.h:
Contains function signatures for the functions implemented in pathnode.c.

• src/include/nodes/pg list.h:
Functions and macros for manipulating lists.

• src/include/nodes/nodes.h:
Functions for manipulating and testing Nodes, which are found in PathKeys.

2

CS448/648 Database Systems Implementation Winter 2012

• src/include/nodes/relation.h:
Defines important structures like PlannerInfo and Path.

• src/include/nodes/print.h:
Defines useful functions for printing.

• src/backend/optimizer/plan/createplan.c:
This file contains all of the functions for converting paths into plan trees to be passed to the executer.
You will need to change the way that sequential scan plans are created to ensure that sorting operations
are added if required by the path.

• src/backend/optimizer/README:
A general overview of query optimization in PostgreSQL , including a discussion of PathKeys

2.2 Useful Hints

• Start this assignment with a fresh copy of the PostgreSQL server source code, to avoid any chance of
bugs from your work on earlier assignments affecting your work on this one. This assignment does not
depend in any way on your work from the earlier assignments.

• If you are using the same PostgreSQL data directory (pgdb) that you used for Assignment 2, be sure
to re-enable non-hash joins for this assignment by editing the PostgreSQL server configuration file.

• The scope of static functions is restricted to the files in which they are declared. While debugging
static functions, local variables cannot be inspected.

• Pathkey comparisons are done by checking pointer equality. Be careful not to create new Pathkeys of
your own, otherwise they will not be detected as useful orders at higher levels.

• allpaths.c file includes useful functions for printing the output required by this assignment, e.g.,
print path. Other useful printing functions, such as print pathkeys, can be used by including
print.h.

3 Assignment Details

This assignment can be divided into subtasks as follows.

1. PostgreSQL identifies extracts PathKeys from the Group By and Order By query clauses, and also
identifies attributes the appear in join conditions. Using this information, you will need to identify the
set of interesting orders for each single-relation sub-query that is processed by the PostgreSQL query
optimizer.

2. Modify sequential scan access paths so that they can include a description of the required sort order.
In other words, you must make it possible to record explicit sorting requirements for each sequential
scan access path.

3. Change the way that the optimizer generates Paths for single-relation sequential scan queries so that
it will generate sequential scan paths that produce each interesting order, in addition to the paths that
it was already generating.

4. Change the way that the optimizer estimates the cost of single-relation sequential scan Paths so that
the estimates include the cost of the final sort, for Paths that require one.

5. Once the optimal Path has been found, it has to be converted into a Plan so that it can be passed to
the executor. At this point, you have to insert a sorting operator into the single-relation sequential
scan plans if the optimal Path is expected to produce output in an interesting order.

3

CS448/648 Database Systems Implementation Winter 2012

CS448 **** Interesting Order from Order By clause: ((e.ename), (m.eno, e.eno))

CS448 **** Interesting Order from Group By clause: ()

CS448 **** Interesting Orders from Join predicates: ((m.eno, e.eno), (d.dno, m.dno))

Possible Paths for Relation 1:

SeqScan(1) rows=20 cost=0.00..1.20

SeqScan(1) rows=20 cost=1.63..1.68

pathkeys: ((e.ename), (m.eno, e.eno))

SeqScan(1) rows=20 cost=1.63..1.68

pathkeys: ((m.eno, e.eno))

Possible Paths for Relation 2:

SeqScan(2) rows=5 cost=0.00..1.05

SeqScan(2) rows=5 cost=1.11..1.12

pathkeys: ((d.dno, m.dno))

Possible Paths for Relation 3:

SeqScan(3) rows=5 cost=0.00..1.05

SeqScan(3) rows=5 cost=1.11..1.12

pathkeys: ((m.eno, e.eno))

SeqScan(3) rows=5 cost=1.11..1.12

pathkeys: ((d.dno, m.dno))

Figure 2: Example of Required Output Format

3.1 Required Debugging Output

You must modify the PostgreSQL optimizer so that it produces the following output for each query that it
optimizes:

• the complete set of interesting orders, if any, arising from Order By clauses, Group By clauses, and
join conditions.

• for each relation in the query, the complete list of sequential scan Paths generated by the optimizer for
that relation. For each each Path, the output should include costing information (output cardinality
estimate and cost estimates) and the pathkeys describing the output order produced by that Path.

For example, for the example query shown in Section 2, the format of your output should be like that
shown in Figure 2. The complete set of interesting orders for the full query is listed first, followed by the
sequential scan Paths for each input relation. For example, the output in Figure 2 shows that the optimizer
considers three Paths for Relation 1 (emp), one that produces unordered output, one that produces output
sorted by ename,eno, and one that produces output sorted by eno. The interesting orders can be printed in
the format shown in Figure 2 by using the print pathkeys function. Path information can be printed using
the print path function.

4 Deliverables

Modified files should be submitted using submit. Only the .c and .h files listed in Section 2.1 will be accepted.
Assuming that the current directory contains all modified files, you can use the following command to submit
them:

submit cs448 a3 .

5 Extra Credit

For extra credit (worth 10% of the value of the assignment), design a SQL join query for which the PostgreSQL
optimizer will use one of your newly-created sorted single-relation sequential scan paths as part of its chosen,

4

CS448/648 Database Systems Implementation Winter 2012

optimal plan for the query. Your query should go against that simple three table database that was published
as a test case for Assignment 2.

To obtain the extra credit, submit an additional file, called extra.sql, which contains a single psql

EXPLAIN of the query you have designed. We will use psql to execute the command and inspect the
resulting query plan and server output to confirm that it does in fact use a sorted sequential scan path.

Before testing your query, we will run the psql ANALYZE command to ensure that the PostgreSQL server’s
database statistics are up to date. You should also do this when designing your extra credit query to ensure
that you can test it under the same testing conditions that we will use.

5

