
University of Waterloo
Midterm Examination Solution

Winter, 2011

1. (6 total marks)

The diagram below shows an extensible hash table with four hash buckets. Each number x in the
buckets represents an entry for a record for which the hashed key value is x. For example, the number
20 in the first hash bucket represents a record for which the hashed key value is 20. The maximum
number of records per bucket is four.

directory

00

01

10

11

20,4,16

5,25,21,13

hash table

27,15,19

a. (2 marks) Give a sequence of two insertions that will cause exactly one new hash bucket to be
added without changing the size of the directory. An example of an insertion is ‘‘insert 9’’,
which refers to insertion of a tuple with a hashed key value of 9. The two hashed key values in
your sequence should be distinct, and should be distinct from the values already shown in the
hash table.

Both insertions should be into the bucket pointed to by directory entries 00 and 10,
and at least one should have hash value 10. For example:

insert 8

insert 10

b. (2 marks) Give a sequence of two insertions that will not cause the hash table’s directory to grow
and that will not cause any new hash buckets to be added. Start from the original hash table
shown in the figure above, not from the hash table that would result from the inserts from part
(a). The two hashed key values in your sequence should be distinct, and should be distinct from
the values already shown in the hash table.

One insertion must go to bucket 00 (or 10), and the other insertion must go to bucket
11. For example

insert 8

insert 11

c. (2 marks) Give a sequence of two insertions that will cause the hash table’s directory to double
twice. If this is not possible, write NOT POSSIBLE. Start from the original hash table shown in
the figure above. The two hashed key values in your sequence should be distinct, and should be
distinct from the values already shown in the hash table.

To cause the directory to double twice, both insertions must go into what will become
bucket 101 after the directory doubles for the first time. In other words x mod 8 must
equal 5. For example:

insert 29

insert 37

CS448/648 1 of 6

2. (6 total marks)
Suppose that a B+Tree index has been created for some attribute R.x of a relation R.

a. (1 mark)
Assume that the B+Tree is clustered and of Type I (index leaves contain tuples of R). Consider
the two rightmost leaf blocks of the B+Tree. Is it necessarily true that the these two blocks are
sequential in the file or disk that contains the B+Tree? Answer YES or NO.

No.

b. (2 marks)
Again, assume that the B+Tree is clustered and of Type I. Suppose that x1, x2, and x3 are values
of R.x, and x1 < x2 < x3. Suppose also that the tuples corresponding to x1 and x3 are located
on the same page, p. Is it necessarily true that the tuple corresponding to x2 is also located on
page p? Answer YES or NO.

Yes.

c. (2 marks)
Repeat question (b), but this time under the assumption that the index is unclustered and of
Type II (index leaves contain tuple IDs).

No.

d. (1 mark) Which of these two types (Type I clustered, Type II unclustered) of indexes will allow
the tuples of R to be retrieved in order of their R.x values? Answer “Type I clustered”, “Type
II unclustered”, “both”, or “neither”.

Both.

3. (12 total marks)

For this question, consider a query that performs a join of tables R and S with the join condition
R.a = S.b. R.a is the primary key of R, and there is a clustered index on R.a. S.b is a candidate key
of S, but there is no index on S.b. Suppose that the size of R is B blocks, that the size of S is also B
blocks, and that the size of the index on R.a is negligible (much less than B).

a. (4 marks)
Suppose the plan for the query is a block nested loop join of R and S, with S as the outer. M
blocks of memory are available for the join operation, where M < B. Give an expression (in terms
of B and M) for the I/O cost of this plan. Assume that the plan output is not materialized.

S will be read once at a cost of B. R will be read B/M times, at a cost of B each
time. So, the total cost is:

B +
B

M
B = B +

B2

M

b. (2 marks)
Suppose instead that the plan for the query is a merge join of R and S. Tuples of R are read
in R.a order using the clustered index on R.a. S is sorted using an external merge sort, the
output of which is pipelined into the join. A total of M blocks of memory are available, where√
B < M < B. How much memory should be used for the merge join operator, and how much

should be used for the sort operator? Briefly justify your answer.

Since R.a is a key of R and S.b is a candidate key of S, there are no duplicate join
keys. In that case, the merge join operator only needs to hold one tuple from each
relation. Therefore, all, or almost all of the available memory should be given to the
sort operator.

CS448/648 2 of 6

3. (cont’d)

c. (4 marks)
Estimate the I/O cost of the plan from part (b), assuming that the M blocks of memory are
allocated as you specified in your answer to that part. Assume that block writes and block reads
have the same cost and that the plan output is not materialized.

For the sort, the run formation phase will involve reading S (cost B) and writing B/M
sorted runs (cost B). Since

√
B < M , the number of runs will be less then M , and a

single merge pass will suffice. That at will have an I/O cost of B to read in the runs,
and no cost to pipeline to the sorted output data. So, the total I/O cost for the sort
will be 3B.
The join will consume the pipelined sort output (no I/O cost) will read R using the
index on R.a. Since the index is clusterd, each block of R will be read once, for a cost
of B. In addition, some index blocks will have to be read, but this cost is negligible
since the index is assumed to be very small.
Thus, the total cost is 4B: 3B from the sort and B from reading R.

d. (2 marks)
Assuming that

√
B < M < B, under what circumstances is the block nested loop join plan

preferable to the merge join plan? Express your answer in terms of B and M , and briefly justify
it.

The block nested loop join is preferable when

B +
B2

M
< 4B

which occurs when B
3 < M

CS448/648 3 of 6

4 (8 marks)
The pseudo-code below implements the GetNext method of an iterator version of tuple-oriented nested-
loop join, as discussed in class.

Iterator state:

Iterator R; // right (inner) child

Iterator L; // left (outer) child

Tuple t; // current outer tuple

GetNext() {
tuple t2; // current inner tuple

if (t == NULL) t = L.GetNext();

while (t <> NULL) {
while((t2 = R.GetNext()) <> NULL) {
if (t matches t2) return (t join t2)

}
R.Close();

R.Open();

t = L.GetNext();

}
return(NULL);

}

Implement the GetNext method of an iterator for merge join, assuming that both the left and right
inputs are already sorted on their join keys. Declare the iterator state and write your code in the style
of the example above. To simplify this problem, you may assume that the left input (only) does not
contain duplicate join keys. The right input may contain duplicates.

Iterator state:

Iterator R; // right (inner) child

Iterator L; // left (outer) child

Tuple tl; // current left tuple (need to save, as it may match multiple

// right tuples)

// on exit, either tl has matched tr or one or both

// inputs are exhausted

GetNext() {
Tuple tr; // right tuple

// don’t get a new tl except when GetNext is first called

if (tl == NULL) tl = L.GetNext();

tr = R.GetNext();

while (tl <> NULL and tr <> NULL) {
if (tl matches tr) then return (tl join tr);

if (joinkey(t1) < joinkey(tr)) then

tl = L.GetNext()l

else

tr = R.GetNext()

}
return(NULL)

}

CS448/648 4 of 6

5 (8 total marks) Consider the hybrid hash join algorithm presented in the notes and discussed class.
Assume that a total of M blocks of memory are available for the join, of which k blocks are used
to build the hash table for the first partition and the remaining M − k blocks are used to stage
the remaining partitions to temporary files. For the purposes of this question, make the simplifying
assumption that the hash table is perfectly space-efficient, i.e., k blocks worth of tuples can be stored
in a hash table of size k blocks.

a. (4 marks)
What is the size of the largest build relation that can be handled by this join operator without
having to recursively re-partition the build relation? Express your answer in terms of M and k,
and justify your answer.

Each partition must have at most k blocks, since it needs to fit into the hash table.
The maximum number of partitions is M − k (actually, M − k + 1), since we need one
block to stage each partition that is being sent to a temporary file on the disk. Thus,
the largest build file that can be handled is about

k(M − k) = Mk − k2

b. (2 marks)
What is the best value for k, if the goal is to maximize the size of build table that can be handled
by this operator without re-partitioning? Justify your answer.

d(Mk − k2)

dk
= M − 2k

This reaches zero when k = M/2, which maximizes build file size.

c. (2 marks)
Does memory size impose a limit on the maximum size of the probe input that can be handled
(without re-partitioning) by this operator? If so, what is the maximum probe table input size (in
terms of M and k) that can be handled by this operator? If not, write NO LIMIT.

NO LIMIT

Memory imposes a limit on the number of partitions of the probe relation (which will
be M−k+1), but not on the size of the partitions, since they do not need to be loaded
into the in-memory hash table.

CS448/648 5 of 6

6 (10 total marks) Provide brief answers to the each of the following questions. “Brief” means a sentence
or two.

a. (2 marks)
What does pipelining mean, in the context of relational query processing?

Pipelining means that each query operator makes its output tuples available to the
next operator as soon as they are produced, rather than waiting until it has finished
producing all of its output tuples.

b. (2 marks)
What is the database physical design problem?

It is the problem if choosing which indexes (or other physical structures) to create for
a particular database, usually given some information about the types of queries and
updates that are expected.

c. (2 marks)
An external merge sort operates in two phases. What are the two phases, and what occurs in
each phase?

The first phase is run formation, during which the entire input is consumed and several
individually-sorted runs are produced. The second phase is merging, during which
multiple sorted runs are merged to produce longer runs - and eventually one single
sorted run.

d. (2 marks)
How does the generalized clock replacement algorithm differ from the basic clock algorithm?

The basic algorithm maintains one bit per cached page to indicate whether that page
has been used recently, and tries to evict pages that have not been used recently. The
generalized algorithm instead maintains a counter per cached page and tries to evict
pages with lower counter values.

e. (2 marks)
What is the cache inclusion problem?

In a two-level cache hierarchy, cache inclusion refers to the problem that the lower level
cache may contain many of the same pages that are found in the upper level cache.

CS448/648 6 of 6

