
Distribution, Partitioning, Replication

Distributed Database Systems

Why build distributed database systems?

• fault tolerance: one server fails, others keep running
• scale out:

• intra-query parallelism: make queries run faster by
parallelizing execution

• inter-query parallelism: increase throughput by
distributing queries to different servers

• federation: “meta” database system that allows
queries spanning multiple existing systems

Cheriton School of Computer Science CS448 Database Systems Implementation (Winter 2012)



Distribution, Partitioning, Replication

Shared Storage DBMS Architectures

W W W WW W

DB

• one database accessed by multiple DBMS
• need to synchronize access by different DBMS to the

database
• need to maintain coherence among DBMS caches
• transactions can be localized at a single DBMS

Cheriton School of Computer Science CS448 Database Systems Implementation (Winter 2012)



Distribution, Partitioning, Replication

Shared Nothing DBMS Architecture:
Partitioning Approach

DB

W W W W W W

Cheriton School of Computer Science CS448 Database Systems Implementation (Winter 2012)



Distribution, Partitioning, Replication

Shared Nothing Partitioning

• each server stores and is responsible for part of the
database

• transactions may be distributed
• goals:

• improved response times via intra-query parallelism
• improved throughput by via inter-query parallelism

• issues:
• how to partition data to maximize parallelism or

transaction localization?
• how to enforce ACID properties of distributed

transactions?

Cheriton School of Computer Science CS448 Database Systems Implementation (Winter 2012)



Distribution, Partitioning, Replication

Distributed Transactions

TTT

R XS

DBMS A DBMS B DBMS C

1. UPDATE R

2. UPDATE S

3. UPDATE X

Global transaction consists of
subtransactions at each site at
which data are read or
written.

Cheriton School of Computer Science CS448 Database Systems Implementation (Winter 2012)



Distribution, Partitioning, Replication

Serializability in Distributed Systems
• execution history at each site describes order of

execution of read and write operations of that site’s
subtransactions

• each site uses a local concurrency control
mechanism (e.g., two-phase locking) to control the
local execution order and serialize the local
subtransactions

• global serializability is achieved if
• the local execution history at every site is serializable
• there is some total ordering of global transactions that

is consistent with the local serialization order at every
site

local serializability does not imply global serializability

Different sites may serialize global transactions in different
orders.

Cheriton School of Computer Science CS448 Database Systems Implementation (Winter 2012)



Distribution, Partitioning, Replication

Failure Atomicity in Distributed Systems

• each site can use a recovery mechanism (e.g.,
logging) to ensure that local subtransactions are
atomic and durable

• local subtransaction is committed when its commit
record is in the local, persistent log

• partial failures are possible: some sites are down,
others are up

• to ensure that a distributed transaction is atomic, we
must ensure that either all of its subtransactions
commit, or all of them abort

Cheriton School of Computer Science CS448 Database Systems Implementation (Winter 2012)



Distribution, Partitioning, Replication

Two-Phase Commit (2PC)

5. commit

6. ack

4. ack

1. commit

2. prepare

3. ack

TTT

R XS

DBMS A DBMS B DBMS C

Cheriton School of Computer Science CS448 Database Systems Implementation (Winter 2012)



Distribution, Partitioning, Replication

The 2PC Protocol
One site acts as the coordinator.
Phase 1:

• The coordinator sends ”prepare” to the other sites.
• Each site decides whether it wants to commit or abort

the transaction and sends its vote to the coordinator
• if abort, it writes an abort record in its log, and votes

for abort
• if commit, it writes a prepare record in its log, and

votes for commit
Phase 2:

• If all sites vote commit, the coordinator writes a
commit record in its log, otherwise it writes an abort
record. The coordinator sends its decision to all of the
sites.

• Each site that voted to commit records the decision in
its log and sends an acknowledgment to the
coordinator.

Cheriton School of Computer Science CS448 Database Systems Implementation (Winter 2012)



Distribution, Partitioning, Replication

2PC Discussion

• A distributed transaction is committed when the
coordinator logs a commit record, at the end of
Phase 1.

• Failure of the coordinator may result in blocking at
other sites:

• once a site sends “prepare” to the coordinator in
Phase 1, the transaction is said to be in doubt at the
site

• a site may not unilaterally commit or abort a
transaction that is in doubt!

• if the coordinator does not report its commit/abort
decision in Phase 2, e.g., because of a failure, other
sites must wait for the coordinator to recover to learn
the fate of in doubt transactions

Cheriton School of Computer Science CS448 Database Systems Implementation (Winter 2012)



Distribution, Partitioning, Replication

Shared Nothing DBMS Architecture
Replication Approach

W W W W W W

DB

Cheriton School of Computer Science CS448 Database Systems Implementation (Winter 2012)



Distribution, Partitioning, Replication

Shared Nothing Replication

• each server stores and is responsible for a copy of the
database

• transactions run at a single site (except update
synchronization)

• goals:
• improved throughput by via inter-query parallelism
• improved availability

• issues:
• how to synchronize replicas so that ACID properties of

transactions are maintained?

Cheriton School of Computer Science CS448 Database Systems Implementation (Winter 2012)



Distribution, Partitioning, Replication

Update Propagation
• each transaction can run at a single site, as every site

has a copy of the complete databases
• for each update transaction, the system initiates

update propagation transactions at other sites
• eager propagation means that the original update

transaction and its propagation transactions commit
or abort as a single global distributed transaction

• lazy propagation means that the original update
transaction commits first, and its propagation
transactions commit separately later.

TTT

R RR

DBMS A DBMS B DBMS C

original transaction update propagation transactions

Cheriton School of Computer Science CS448 Database Systems Implementation (Winter 2012)



Distribution, Partitioning, Replication

Global 1-Copy Serializability
• execution history at each site includes transactions

initiated at that site, plus update propagation
transactions from other sites

• each site uses a local concurrency control
mechanism (e.g., two-phase locking) to control the
local execution order and serialize the local
transactions

• global 1-copy serializability (1SR) is achieved if it
appears as if all transactions executed sequentially
on a single copy of the database

• 1SR is achieved if
• the local execution history at every site is serializable
• there is some total ordering of update transactions

that is consistent with the local serialization order at
every site

Cheriton School of Computer Science CS448 Database Systems Implementation (Winter 2012)



Distribution, Partitioning, Replication

Eager Read-One, Write-All (ROWA) Replication

• each transaction runs at a single site
• for update transactions, the DBMS initiates update

propagation transactions at all other sites
• commit of an update transaction and its update

propagation transactions is coordinated using
two-phase commit

• replicas remain tightly synchronized

Correctness
Local strict two-phase locking at each site, plus
two-phase commit of update propagation transactions, is
sufficient to ensure global 1-copy serializability

Cheriton School of Computer Science CS448 Database Systems Implementation (Winter 2012)



Distribution, Partitioning, Replication

Lazy-Master Replication
• a single master site handles all update transactions
• slave sites handle read-only transactions
• local concurrency control at the master site serializes

update transactions
• updates are propagated lazily, in serialization order,

from the master site to the slaves
• slaves execute and serialize update propagation

transactions in propagation order

Correctness
Local serializability at each site, plus in-order propagation
of updates from master to slaves, is sufficient to ensure
global 1-copy serializability. However, read-only
transactions may see stale data.

Cheriton School of Computer Science CS448 Database Systems Implementation (Winter 2012)



Distribution, Partitioning, Replication

Lazy-Master vs. Eager ROWA

• Advantage of Eager ROWA: freshness
• all transactions get an up-to-date view of the

database
• Advantage of Lazy-Master: no two-phase commit

• update transactions (at the master) and propagation
transactions (at the slaves) commit independently

• scalability
• lazy-master scales easily - by adding more slaves - until

the master site becomes a bottleneck
• commit coordination (2pc) limits scalability of eager

replication: more sites means slower update
transactions

Cheriton School of Computer Science CS448 Database Systems Implementation (Winter 2012)


	Distribution, Partitioning, Replication

