Distribution, Partitioning, Replication

Distributed Database Systems

Why build distributed database systems?

o faulf tolerance: one server fails, others keep running
e scale out:

o intra-query parallelism: make queries run faster by
parallelizihg execution

o inter-query parallelism: increase throughput by
distriouting queries to different servers

o federation: *meta” database system that allows
queries spanning multiple existing systems

Cheriton School of Computer Science C8448 Database Systems Implementation (Winter 2012)

Distribution, Partitioning, Replication

Shared Storage DBMS Architectures

[o)
LN

one database accessed by multiple DBMS

need to synchronize access by different DBMS 1o the
database

need to maintain coherence among DBMS caches
fransactions can be localized at a single DBMS

Cheriton School of Computer Science C8448 Database Systems Implementation (Winter 2012)

Distribution, Partitioning, Replication

Shared Nothing DBMS Architecture:
Partitioning Approach

EIEE
E—=c—
W

L@

DB

Cheriton School of Computer Science CS448 Database Systems Implementation (Winter 2012)

Distribution, Partitioning, Replication

Shared Nothing Partitioning

each server stores and is responsible for part of the
database

transactions may be distributed
goals:
e improved response times via intra-query parallelism
o improved throughput by via inter-query parallelism
issues:

e how to partition data to maximize parallelism or
transaction localization?

e how to enforce ACID properties of distributed
transactions?

Cheriton School of Computer Science C8448 Database Systems Implementation (Winter 2012)

Distribution, Partitioning, Replication

Distributed Transactions

Global tfransaction consists of
subtransactions at each site at
2. UPDATE S which data are read or

3. UPDATE X written.

1. UPDATE R

Cheriton School of Computer Science CS448 Database Systems Implementation (Winter 2012)

Distribution, Partitioning, Replication

Serializability in Distributed Systems

e execution history at each site describes order of
execution of read and write operations of that site’s
subtransactions

e eqach site uses a local concurrency control
mechanism (e.g., two-phase locking) to control the
local execution order and serialize the local
subtransactions

o global serializability is achieved if

o the local execution history at every site is serializable
o there is some total ordering of global fransactions that

is consistent with the local serialization order at every
site

local serializability does not imply global serializability

Different sites may serialize global tfransactions in different
orders.

Cheriton School of Computer Science C8448 Database Systems Implementation (Winter 2012)

Distribution, Partitioning, Replication

Failure Atomicity in Distributed Systems

eqach site can use a recovery mechanism (e.g..
logging) to ensure that local subfransactions are
atomic and durable

¢ local subtransaction is committed when its commit
record is in the local, persistent log
partial failures are possible: some sites are down,
others are up

to ensure that a distributed fransaction is atomic, we
must ensure that either all of its subtransactions
commit, or all of them abort

Cheriton School of Computer Science C8448 Database Systems Implementation (Winter 2012)

Distribution, Partitioning, Replication

Two-Phase Commit (2PC)

1. commit

DBMS A

0 2. prepare T 0 T
3. ack
5. commit
6. ack

Cheriton School of Computer Science CS448 Database Systems Implementation (Winter 2012)

Distribution, Partitioning, Replication

The 2PC Protocol
One site acts as the coordinator.
Phase 1:

e The coordinator sends “prepare” to the other sites.

e Each site decides whether it wants to commit or abort
the transaction and sends its vote to the coordinator

e if abort, it writes an abort record in its log, and votes
for abort
o if commit, it writes a prepare record in its log, and
votes for commit
Phase 2:

o If all sites vote commit, the coordinator writes a
commit record in its log, otherwise it writes an abort
record. The coordinator sends its decision to all of the
sites.

e Each site that voted to commit records the decision in
its log and sends an acknowledgment to the
coordinator.

Cheriton School of Computer Science CS448 Database Systems Implementation (Winter 2012)

Distribution, Partitioning, Replication

2PC Discussion

e A distributed transaction is committed when the
coordinator logs a commit record, at the end of
Phase 1.

e Failure of the coordinator may result in blocking at
other sites:

e once a site sends “prepare” to the coordinator in
Phase 1, the transaction is said to be in doubt at the
site

e asite may not unilaterally commit or abort a
transaction that is in doulbft!

o if the coordinator does not report its commit/abort
decision in Phase 2, e.g., because of a failure, other
sites must wait for the coordinator to recover to learn
the fate of in doubt tfransactions

Cheriton School of Computer Science CS448 Database Systems Implementation (Winter 2012)

Distribution, Partitioning, Replication

Shared Nothing DBMS Architecture
Replication Approach

@@ @@

I
(=]

DB

Cheriton School of Computer Science CS448 Database Systems Implementation (Winter 2012)

Distribution, Partitioning, Replication

Shared Nothing Replication

each server stores and is responsible for a copy of the
database

fransactions run at a single site (except update
synchronization)

goals:

o improved throughput by via inter-query parallelism
o improved availability

issues:

¢ how to synchronize replicas so that ACID properties of
tfransactions are maintained?

Cheriton School of Computer Science C8448 Database Systems Implementation (Winter 2012)

Distribution, Partitioning, Replication

Update Propagation

each transaction can run at a single site, as every site
has a copy of the complete databases

for each update transaction, the system initiates
update propagation fransactions at other sites

eager propagation means that the original update
fransaction and its propagation transactions commit
or abort as a single global distributed fransaction

lazy propagation means that the original update
fransaction commits first, and its propagation
transactions commit separately later.

original transaction update propagation transactions
‘T T
R L R R
DBMS A DBMS B DBMS C

Cheriton School of Computer Science C8448 Database Systems Implementation (Winter 2012)

Distribution, Partitioning, Replication

Global 1-Copy Serializability

e execution history at each site includes transactions
initfiated at that site, plus update propagation
transactions from other sites

e eqach site uses a local concurrency control
mechanism (e.g., two-phase locking) to control the
local execution order and serialize the local
fransactions

o global 1-copy serializability (1SR) is achieved if it
appears as if all transactions executed sequentially
on a single copy of the database

¢ 1SR is achieved if

o the local execution history at every site is serializable

o there is some total ordering of update transactions
that is consistent with the local serialization order at
every site

Cheriton School of Computer Science CS448 Database Systems Implementation (Winter 2012)

Distribution, Partitioning, Replication

Eager Read-One, Write-All (ROWA) Replication

e each transaction runs at a single site

o for update fransactions, the DBMS initiates update
propagation transactions at all other sites

e« commit of an update tfransaction and its update
propagation fransactions is coordinated using
two-phase commit

e replicas remain fightly synchronized

Correctness

Local strict two-phase locking at each site, plus
two-phase commit of update propagation transactions, is
sufficient to ensure global 1-copy serializability

Cheriton School of Computer Science CS448 Database Systems Implementation (Winter 2012)

Distribution, Partitioning, Replication

Lazy-Master Replication

a single master site handles all update transactions
¢ slave sites handle read-only transactions

e local concurrency control at the master site serializes
update transactions

e updates are propagated lazily, in serialization order,
from the master site to the slaves

¢ slaves execute and seridlize update propagation
fransactions in propagation order

Correctness

Local serializability at each site, plus in-order propagation
of updates from master to slaves, is sufficient to ensure
global 1-copy serializability. However, read-only
tfransactions may see stale data.

Cheriton School of Computer Science CS448 Database Systems Implementation (Winter 2012)

Distribution, Partitioning, Replication

Lazy-Master vs. Eager ROWA

« Advantage of Eager ROWA: freshness
¢ all transactions get an up-to-date view of the
database
o Advantage of Lazy-Master: no two-phase commit
¢ update fransactions (at the master) and propagation
transactions (at the slaves) commit independently
« scalability
o lazy-master scales easily - by adding more slaves - until
the master site becomes a bottleneck
« commit coordination (2pc) limits scalability of eager
replication: more sites means slower update
tfransactions

Cheriton School of Computer Science C8448 Database Systems Implementation (Winter 2012)

	Distribution, Partitioning, Replication

