Access Methods and Indexing

File Organization

e file organization is about which tuples to place on
each page, and how specific tuples can be inserted,
retrieved, updated and deleted

» two simple file organizations
"heap” files: any record can be placed on any page

o fast, simple insertion

e supports scan operations - retrieval of all
tuples in a table

« no efficient way to retrieve specific tuples

sorted files: records are sorfed according to the value
of one (or more) attributes

e can support table scan in sorted order

¢ log fime retrieval of specific tuples (binary
search)

e insertions may be expensive

Cheriton School of Computer Science CS448 Database Systems Implementation (Winter 2012)

Access Methods and Indexing

Indexes

e anindex is a data structure used for file organization
e indexes may be used to support

o efficient retrieval of specific tuples, e.g., the record of
an employee with a specified employee ID

o efficient retrieval of ranges of tuples, e.g., the records
of employees with start dates in 2010

o ordered tuple scans, e.g., the records of all
employees, ordered by surname

o other operations, e.g., insertion, deletion, enforcement
of integrity constraints

e there are many types of indexes, e.g., free-structured,
hash-based

» there may be more than one index on a single table

Cheriton School of Computer Science CS448 Database Systems Implementation (Winter 2012)

Access Methods and Indexing

Example: A Clustered B+-tree

root node

Cheriton School of Computer Science C8448 Database Systems Implementation (Winter 2012)

Access Methods and Indexing

Clustering

o Arelation whose tuples are grouped into blocks
based on the value of attribute (field) A is said to be
clustered on A. An index on aftribute Ais called a
Clustered index.

¢ Indexes that do not have this property are called
unclustered indexes

e A relatfion that is sorted on A is clustered on A.
However, a relatfion that is clustered on A need not be
strictly sorted on A.

Cheriton School of Computer Science CS448 Database Systems Implementation (Winter 2012)

Access Methods and Indexing

Example: An Unclustered B+-free Index

Ashton ; Page 0
Davison
Page 1
bawson
Jones Page 2
Page 3

57_: Ashton Page 4

77 :Salem Page 5

Parker Page 6

R
Weddell,

~<————————— Index Pages Data Pages

Cheriton School of Computer Science C8448 Database Systems Implementation (Winter 2012)

Access Methods and Indexing

B-tree blocks

o Non-Leaf blocks
e each block stores at most m values and m + 1 pointers
» each block stores at least |m/2]| values and |m/2] + 1
pointers

(Po| Vi PVl | Vi | P

e Leaf blocks
 may contain the tuples themselves (called Type 1 in
the textbook)
e illustrated on Slide 3
e may contain key values plus tuple identifiers (called
Type 2 and Type 3in the textbook)
o illustrated on Slide 5
o Type 2 and Type 3 are distinguished by the way they
handle duplicate search keys

Cheriton School of Computer Science CS448 Database Systems Implementation (Winter 2012)

Access Methods and Indexing

Terminology

e Type 1 Indexes
e are clustered by definition (why?)
e are sometimes called index-organized files
o alternative to heap files and sorted files
o Type 2 and Type 3 Indexes
o often unclustered, but may be clustered (how?)

o There can be at most one clustered index per relation
(why?), and that index is sometimes called the
primary index.

e A table can have multiple unclustered indexes, and
they are sometimes called secondary indexes

¢ A dense index includes all search key values in its leaf
nodes. A sparse index only includes one search key
per data block.
e asparse index only makes sense if it is built on the
relation’s clustering afttribute

Cheriton School of Computer Science C8448 Database Systems Implementation (Winter 2012)

Access Methods and Indexing

B-free Insertions

. Determine leaf block where new tuple belongs.
. If there is room in the block, place the tuple in it.

. If there is no room, find an empty block, and move
half of the records into the new block. This is called
splitting.

. Add an entry for the new block in the parent index
block.

. If the index block is full, it may split. In this case, the
middle pointer is promoted to the next higher index
level.

. Splitting may continue all the way to the root of the
b-tfree.

Cheriton School of Computer Science CS448 Database Systems Implementation (Winter 2012)

Access Methods and Indexing

Insertion Example

66 Truman Page 7
73 McNair (new page)

S _raer Page 6

Page 0
-
1 Page |
ge
_} 1 :

27 :Dawson
31 Jomes | page2
Page 3

root node X 57 [Ashton new tuple

7| Page4

95 : Green

Cheriton School of Computer Science C8448 Database Systems Implementation (Winter 2012)

Access Methods and Indexing

Insertion Example (cont.)

root node new tuple

s
X,

\ E

83 {Wals
84 Parker
90

95 : Green

Cheriton School of Computer Science C8448 Database Systems Implementation (Winter 2012)

Access Methods and Indexing

Insertion Example (cont.)

10 Davi

27 ‘Dawson

31 Jones

new tuple
root node - 211A8 _—

Truman

84 . Parker
90 . Strong___
95 : Green

Cheriton School of Computer Science C8448 Database Systems Implementation (Winter 2012)

Access Methods and Indexing

B-tree Deletions

. Determine leaf block where tuple is located.

. Remove the tuple from the leaf block.

. If the block is less than half full, either:

e distribute remaining tuples to the block’s sibling,
remove the block from the B-tree, and delete the
block’s pointer from the parent index node, or

o steal some tuples from the block’s siblings, and place
them in the block

. If aleaf block is removed, its pointer must be deleted

from its parent’s index node. Deletion of pointers may

cascade all the way to the root.

Cheriton School of Computer Science CS448 Database Systems Implementation (Winter 2012)

Access Methods and Indexing

Deletion Example

<—— delete this

root node

Cheriton School of Computer Science C8448 Database Systems Implementation (Winter 2012)

Access Methods and Indexing

Deletion Example (cont'd)

root node

Cheriton School of Computer Science C8448 Database Systems Implementation (Winter 2012)

Access Methods and Indexing

Deletion Example (cont'd)

_|=— delete this

root node

Cheriton School of Computer Science C8448 Database Systems Implementation (Winter 2012)

Access Methods and Indexing

Deletion Example (cont'd)

. 10 : Davis
fix this ~__ |17 Taylor
- 27 :Dawson

root node

Cheriton School of Computer Science C8448 Database Systems Implementation (Winter 2012)

Access Methods and Indexing

Deletion Example (cont'd)

root node

Cheriton School of Computer Science C8448 Database Systems Implementation (Winter 2012)

Access Methods and Indexing

Hash-based Indexes

basic idea: use hashing to map attribute values to
page numbers

fast access to specific tuples, but no support for range
retrievals or sortfed scans

retrieval performance of static hashing can
deteriorate over time due to bucket overflows caused
by tuple insertions

extensible hashing fries to avoid this problem

Cheriton School of Computer Science C8448 Database Systems Implementation (Winter 2012)

Access Methods and Indexing

Static Hashing

| 27 Dawson __ A .
0| 31_: Jones __ S;(sumhe(.x)

‘ 10| 2

| 17 .Taylor 14717 2

/ 1|39 Weddell _ 17 1
h(x) : 21 2
| 10 Davis____| 44 Hoff 27| 0

2| 14 Smith | _ | 31 0

21 :Garner 39 1

| 83 Walsh ___ 44| 2
30 83 3

Cheriton School of Computer Science CS448 Database Systems Implementation (Winter 2012)

Access Methods and Indexing

Extensible Hashing

27 :Dawson

Assume:
X

10
14
17
21
27
31
39
83

directory

g
X

h(x) 2

W —| OO N —| NN

Cheriton School of Computer Science CS448 Database Systems Implementation (Winter 2012)

Access Methods and Indexing

Extensible Hashing Directory Extension

directo |27 Dawson_ ASSU me:
_/ry/',él,i,,lqne,s”,, ’ X H ha(x) ‘ hg(x) ‘
O | 1 10 2 2
1 | 17 Taylor 14 2 6
- NV 7 1 1
) ﬁé | 10__ Davis____ 21 2 %
4 - | 4 Smith— 27 0 0
517 21 ‘Garner 3] 0 4
6] \| | 83 Walsh 39 1 1
7 TR e 44 2 6
. 83 3 7
14 Smith
44 Hoff |44 Hoff

Cheriton School of Computer Science CS448 Database Systems Implementation (Winter 2012)

Access Methods and Indexing

Extensible Hashing Block Allocation

46 Ryan A
61 Brinks \ ssume.
o | x| he(x)

directory ’*ZZ’?D?W’S’O L
— 7 31 Jones 10 2
0| 7] 1 140 6
1~ | 17 (Taylor __ 17 1
h(x) 21 N ”3’9”%wqqqe’“’" 21 2
3 - 27 0

10 : Davis

4 j | t4—Smith— _ 31 4
517 21 Garner 39 1
6| \| |83 Walsh __ a8 6
I e 26| 0
|14 Smith ol 4
| _44_Hoff ____ 83 /

Cheriton School of Computer Science CS448 Database Systems Implementation (Winter 2012)

Access Methods and Indexing

Exploiting Access Methods

 DBMS may have multiple access methods for a single
relation

e For each query, the DBMS query optimizer must select
an access method for each relation involved in a
query.

e The task of choosing which access methods are
available falls to the database administrator (DBA),
and is called physical design.

Cheriton School of Computer Science C8448 Database Systems Implementation (Winter 2012)

Access Methods and Indexing

The Physical Schema

create index LastnameIndex
OoNn Employee (Lastname) ;

drop index LastnameIndex

Effects of LastnameIndex:

¢« May speed up processing of queries involving
Lastname

o May increase execution time for
insertions/deletions/updates of tuples from Employee

e Increases the size of the database

Cheriton School of Computer Science C8448 Database Systems Implementation (Winter 2012)

Access Methods and Indexing

Relevant Access Methods

Song (SongID, Title,ReleaselID,Duration,Format, Genre)
Release (ReleaselID, Title,ArtistID, ReleaseDate)

select S.Genre, count(x), sum(S.Duration)
from Song S, Release R
where S.ReleaseID = R.ReleaselD

and S.Format = 'MP3’

and R.ReleaseDate > ’1/1/2005
group by sS.Genre
orderby s.Genre

Which access methods might be useful for this query?

Cheriton School of Computer Science C8448 Database Systems Implementation (Winter 2012)

Access Methods and Indexing
Physical Design Advisors

)

% db2advis -d sample -s "select empno, lastname
from employee where workdept = ’"xxxx’"

Found maximum set of [1l] recommended indexes
total disk space needed for initial set [0.005]
[50.5219] timerons (without indexes)

[25.1521] timerons (with current solution)
[%$50.22] improvement

—— index[1], 0.005MB
CREATE INDEX WIZ1517 ON "KMSALEM "."EMPLOYEE"
("WORKDEPT" ASC, "LASTNAME" ASC, "EMPNO" ASC) ;

Design advisors can assist DBAs with physical design.

Cheriton School of Computer Science C8448 Database Systems Implementation (Winter 2012)

	Access Methods and Indexing

