
Transactions

Problems Caused by Failures

• Update all account balances at a bank branch.
Accounts(Anum, CId, BranchId, Balance)

Update Accounts
Set Balance = Balance * 1.05
Where BranchId = 12345

Partial Updates - Lack of Atomicity

If the system crashes while processing this update, some,
but not all, tuples with BranchId = 12345 may have
been updated.

Cheriton School of Computer Science CS448 Database Systems Implementation (Winter 2012)



Transactions

Another Failure-Related Problem

• transfer money between accounts:
Update Accounts
Set Balance = Balance - 100
Where Anum = 8888

Update Accounts
Set Balance = Balance + 100
Where Anum = 9999

Partial Updates - Lack of Atomicity

If the system fails between these updates, money may be
withdrawn but not redeposited

Cheriton School of Computer Science CS448 Database Systems Implementation (Winter 2012)



Transactions

Problems Caused by Concurrency
• Application 1:
Update Accounts
Set Balance = Balance - 100
Where Anum = 8888

Update Accounts
Set Balance = Balance + 100
Where Anum = 9999

• Application 2:
Select Sum(Balance)
From Accounts

Lack of Isolation
If the applications run concurrently, the total balance
returned to application 2 may be inaccurate.

Cheriton School of Computer Science CS448 Database Systems Implementation (Winter 2012)



Transactions

Another Concurrency Problem
• Application 1:
Select balance into :balance
From Accounts
Where Anum = 8888

compute :newbalance using :balance

Update Accounts
Set Balance = :newbalance
Where Anum = 8888

• Application 2: same as Application 1

Lost Updates

If the applications run concurrently, one of the updates
may be “lost”.

Cheriton School of Computer Science CS448 Database Systems Implementation (Winter 2012)



Transactions

Transaction Properties
• Transactions are durable, atomic

application-specified units of work.
Atomic: indivisible, all-or-nothing.

Durable: effects survive failures.

The “ACID” Properties

A tomic: a transaction occurs entirely, or not at
all

C onsistent
I solated: a transaction’s unfinished changes

are not visible to others
D urable: once it is complete, a transaction’s

changes are permanent

Cheriton School of Computer Science CS448 Database Systems Implementation (Winter 2012)



Transactions

Abort and Commit

Commit: • When a transaction commits, any
updates it made become durable, and
they become visible to other transactions.

• A commit is the “all” in “all-or-nothing”
execution.

• SQL: commit work
Abort: • When a transaction aborts any updates it

may have made are undone (erased), as
if the transaction never ran at all.

• An abort is the “nothing” in
“all-or-nothing” execution.

• SQL: rollback work
• the DBMS may unilaterally abort a running

transaction

Cheriton School of Computer Science CS448 Database Systems Implementation (Winter 2012)



Transactions

Serializability (informal)

• Concurrent transactions must appear to have been
executed sequentially, i.e., one at a time, in some
order.

• If Ti and Tj are concurrent transactions, then either:
• Ti will appear to precede Tj , meaning that Tj will “see”

any updates made by Ti , and Ti will not see any
updates made by Tj , or

• Ti will appear to follow Tj , meaning that Ti will see Tj’s
updates and Tj will not see Ti’s.

Cheriton School of Computer Science CS448 Database Systems Implementation (Winter 2012)



Transactions

Concurrency Control

• Serializability can be guaranteed by executing
transactions serially, but this may result in poor
performance

• Alternative: allow transactions to execute
concurrently, but use a concurrency control protocol
is used to ensure that their execution is serializable

• Some tools used by concurrency control protocols:
• block, or delay, operations
• abort transactions
• multi-versioning

• Many concurrency control protocols have been
proposed, based on:

• locking, or
• timestamps, or
• conflict analysis

Cheriton School of Computer Science CS448 Database Systems Implementation (Winter 2012)



Transactions

Two-Phase Locking
• The rules

1. Before a transaction may read or write an object, it
must have a lock on that object.

• a shared lock is required to read an object
• an exclusive lock is required to write an object

2. Two or more transactions may not hold conflicting
locks on the same object at the same time

• exclusive locks conflict with exclusive and shared locks
• shared locks do not conflict with other shared locks

3. Once a transaction has released (unlocked) any
object, it may not obtain any new locks.

• Phase 1: acquiring locks, Phase 2: releasing locks
• In strict 2PL, all locks are held until commit or abort.

If all transactions use two-phase locking, the execution
history is guaranteed to be serializable.

Cheriton School of Computer Science CS448 Database Systems Implementation (Winter 2012)



Transactions

Transaction Blocking

• Consider the following sequence of events:
• T1 acquires a shared lock on x and reads x
• T2 attempts to acquire an exclusive lock on x (so that it

can write x)

• The two-phase locking rules prevent T2 from acquiring
its exlusive lock - this is called a lock conflict.

• Lock conflicts can be resolved in one of two ways:
1. T2 can be blocked - forced to wait until T1 releases its

lock
2. T1 can be pre-empted - forced to abort and give up

its locks

Cheriton School of Computer Science CS448 Database Systems Implementation (Winter 2012)



Transactions

Deadlocks

• transaction blocking can result in deadlocks
• for example:

• T1 reads object x
• T2 reads object y
• T2 attempts to write object x (it is blocked)
• T1 attempts to write object y (it is blocked)

A deadlock can be resolved only by forcing one of the
transactions involved in the deadlock to abort.

Cheriton School of Computer Science CS448 Database Systems Implementation (Winter 2012)



Transactions

Serializability Theory: A Brief Detour

• A transaction is a sequence of read and write
operations.

• An execution history over a set of transactions T1 . . . Tn
is an interleaving of the the operations of T1 . . . Tn in
which the operation ordering imposed by each
transaction is preserved.

• Two operations conflict if:
• they belong to different transactions
• they operate on the same object
• at least one of the operations is a write

Cheriton School of Computer Science CS448 Database Systems Implementation (Winter 2012)



Transactions

Serial and Serializable Histories

• T1 = w1[x ] w1[y ], T2 = r2[x ] r2[y ]
• An interleaved execution of T1 and T2:

Ha = w1[x ] r2[x ] w1[y ] r2[y ]
• An equivalent serial execution of T1 and T2:

Hb = w1[x ] w1[y ] r2[x ] r2[y ]
• An interleaved execution of T1 and T2 with no

equivalent serial execution:
Hc = w1[x ] r2[x ] r2[y ] w1[y ]

Ha is serializable because it is equivalent to Hb , a serial
schedule. Hc is not serializable.

Cheriton School of Computer Science CS448 Database Systems Implementation (Winter 2012)



Transactions

Testing for Serializability

r1[x ] r3[x ] w4[y ] r2[u] w4[z] r1[y ] r3[u] r2[z] w2[z] r3[z] r1[z] w3[y ]

Is this history serializable?

Serialization Graph

A history is serializable iff its serialization graph is acyclic.

Cheriton School of Computer Science CS448 Database Systems Implementation (Winter 2012)



Transactions

Serialization Graphs

r1[x ] r3[x ] w4[y ] r2[u] w4[z] r1[y ] r3[u] r2[z] w2[z] r3[z] r1[z] w3[y ]

The history above is equivalent to

w4[y ] w4[z] r2[u] r2[z] w2[z] r1[x ] r1[y ] r1[z]r3[x ] r3[u] r3[z] w3[y ]

That is, it is equivalent to executing T4 followed by T2
followed by T1 followed by T3.

Cheriton School of Computer Science CS448 Database Systems Implementation (Winter 2012)



Transactions

Two-Phase Locking Revisited

• How does 2PL ensure serializability?
• Consider again non-serializable Hc:

Hc = w1[x ] r2[x ] r2[y ] w1[y ]
• 2PL prevents non-serializable histories by blocking

(and hence reordering) operations that might lead to
non-serializability

• 2PL can be too conservative - it may also prevent
some serializable histories from occurring

Ha = w1[x ] r2[x ] w1[y ] r2[y ]

Cheriton School of Computer Science CS448 Database Systems Implementation (Winter 2012)



Transactions

Phantoms

Transaction 1:

Insert Into Employee
Values (’123’,’Shel’,
’Jetstream’,’D11’,52000)

Transaction 2:

Select *
From Employee
Where WorkDept = ’D11’

Select *
From Employee
Where Salary > 50000

• Transaction 2 may observe a phantom tuple, not
possible in a serial execution.

• 2PL of database records (or pages) may not be
enough to ensure serializability in the presence of
insertions or delations.

Cheriton School of Computer Science CS448 Database Systems Implementation (Winter 2012)



Transactions

Insertions, Deletions and Serializability

• Queries must conflict with (and hence “lock”) all
tuples that satisfy the query predicates, including
previously-deleted or to-be-inserted tuples that are
not currently in the database.

• One solution: relation-level locks
• Another solution: index key-range locking

• consider query with predicate WorkDept = ’D11’
• suppose there is an index on WorkDept
• query locks index key range covering ’D11’,

preventing insertions in that range

Cheriton School of Computer Science CS448 Database Systems Implementation (Winter 2012)



Transactions

Multi-Granularity Locking

• allow transactions to lock entire relation, or individual
records in the relation, as appropriate

• before locking smaller granules (e.g., records), set
intention-mode locks on the containing larger granule
(e.g., relation)

• lock conflict table, including intention-mode locks

X S IX IS
X no no no no
S no yes no yes

IX no no yes yes
IS no yes yes yes

• IX = intention exclusive, IS = intention shared

Cheriton School of Computer Science CS448 Database Systems Implementation (Winter 2012)



Transactions

Snapshot Isolation (SI)
• every transaction T “sees” a snapshot of the

database
• T ’s snapshot includes updates made by all

transactions that committed before T starts
• T ’s snapshot does not included any updates made by

concurrent transactions

• each transaction sees its own updates
• concurrent transactions may not perform conflicting

updates

SI vs. serializability

Pro: read-only transactions never block
Con: potential anomalies from non-serializable

behavior

Cheriton School of Computer Science CS448 Database Systems Implementation (Winter 2012)



Transactions

Implementing Snapshot Isolation

• multi-versioning
• if transaction T updates object (e.g, page) p,

concurrent transactions must continue to see
pre-update version of p

• detecting write-write conflicts
• can be done using write locks (no need for read locks)
• can be done using commit-time validation

• each transaction T maintains a list of updated objects
(e.g. pages)

• when T trys to commit, ensure no already-committed
concurrent transactions updated any of the same
objects. If no conflicts, commit T else abort T .

• implements a first committer wins rule for concurrent
conflicting upates

Cheriton School of Computer Science CS448 Database Systems Implementation (Winter 2012)



Transactions

Recovery Management

Recovery management means:
• implementing voluntary or involuntary rollback of

individual transactions
• implementing recovery from system failures so that

transaction ACID properties are guaranteed
• system failure means:

• the database server is halted
• processing of in-progress SQL command(s) is halted
• connections to application programs (clients) are

broken.
• contents of memory buffers are lost

Cheriton School of Computer Science CS448 Database Systems Implementation (Winter 2012)



Transactions

Failures and Transactions

• To ensure that transactions are atomic, every
transaction that is active when a system failure occurs
must either be

• restarted after the failure from the point it which it left
off, or

• rolled back after the failure
• It is difficult to restart applications after a system

failure, so the recovery manager does the following:
• abort transactions that were active at the time of the

failure
• ensure that changes made by transactions that

committed before the failure are not lost

Cheriton School of Computer Science CS448 Database Systems Implementation (Winter 2012)



Transactions

Buffers and Persistent Storage

Client

lib

Client

lib

W W

DBMS

DB

buffer cache

Cheriton School of Computer Science CS448 Database Systems Implementation (Winter 2012)



Transactions

Committing a Transaction

• Suppose that a running transaction results in the
following sequence of events:

• update page Pa
• update page Pb
• update page Pc
• update page Pd
• commit

• How should this transaction be committed?

Cheriton School of Computer Science CS448 Database Systems Implementation (Winter 2012)



Transactions

Logging

Client

lib

Client

lib

W W

DBMS

LOG 

BUFFER

LOG

buffer cache

• log is an append-only list
of log records

• log tail (most recent
entries) is in memory

• log entries are flushed from
log buffer to disk in order

• log entries are flushed in
batches when possible

Cheriton School of Computer Science CS448 Database Systems Implementation (Winter 2012)



Transactions

Committing a Transaction Using Logging

Events for transaction T :
• update page Pa

• update page Pb

• update page Pc

• update page Pd

• commit

Logging for T :
• log updated state of Pa

• log updated state of Pb

• log updated state of Pc

• log updated state of Pd

• log commit record for T

• ensure the commit record is on disk before
acknowledging commit to application

• buffer manager need not flush updated pages to disk
• use log records to restore effects of T after a failure

Cheriton School of Computer Science CS448 Database Systems Implementation (Winter 2012)



Transactions

UNDO Logging and WAL
• the previous example illustrated REDO logging

• each log entry describes how to re-apply an update
that has been lost

• REDO logging is used to ensure durability of
committed updates

• UNDO logging is also useful
• an UNDO log entry describes how to erase or undo an

update that has already been applied
• UNDO logging is used to ensure that the effects of

aborted transactions are erased.

Write-Ahead Logging (WAL) Protocol

The WAL protocol requires that the log record describing
an update be on persistent storage before the update
itself is on persistent storage.

Cheriton School of Computer Science CS448 Database Systems Implementation (Winter 2012)



Transactions

Log Example

log head → T0,begin
(oldest part of the log) T0,Pd ,d0,d1

T1,begin
T1,Pb,b0,b1
T2,begin
T2,Pc,c0,c1
T1,Pa,a0,a1
T1,commit
T3,begin

on disk T2,abort
in memory T3,Pb,b1,b2

T4,begin
(newest part of the log) T4,Pa,a1,a2

log tail → T3,commit

Cheriton School of Computer Science CS448 Database Systems Implementation (Winter 2012)



Transactions

Log-Based Recovery
• on recovery from a failure, use the log to ensure that

the database
• contains the effects of all committed transactions
• does not contain any effects of aborted transactions

before allowing new transactions to begin executing
• simple two-pass log-based recovery

Pass 1 (tail to head): identify losers and winners and
rollback the losers

Pass 2 (head to tail): redo the winners
• this simple log and recovery algorithm assumes

• page-level locking (why??)
• idempotent log records

Transaction Commit
A transaction is atomically and durably committed when
its commit log record is flushed to the log disk.

Cheriton School of Computer Science CS448 Database Systems Implementation (Winter 2012)



Transactions

Checkpoints

• As the log grows, the time required to recover from a
system failure also grows.

• checkpoints are used to reduce the amount of log
data that must be scanned after a system failure.

• simple checkpointing algorithm
1. prevent new transactions from starting, and wait for

active transactions to finish
2. flush all modified pages from the buffer pool to the disk
3. truncate the log

• simple algorithm is effective but expensive
• other checkpointing algorithms try to achieve a

similar effect with less impact on performance

Cheriton School of Computer Science CS448 Database Systems Implementation (Winter 2012)



Transactions

Buffer Management and Transactions

• Force vs. No Force Buffer Management
Force: All of a transaction’s changes are present

on the disk by the time the transaction
commits.

No Force: Some of a transaction’s changes may not
be on disk by the time the transaction
commits.

• Steal vs. No Steal Buffer Management
Steal: Uncommitted changes may be present

on the disk.
No Steal: Uncommitted changes are never present

on the disk.

Cheriton School of Computer Science CS448 Database Systems Implementation (Winter 2012)



Transactions

Buffer Management and Transactions (cont’d)

Force,No Steal: no logging required, but impractical
(why?)

Force,Steal: UNDO logging required, transaction commits
are expensive

No Force, No Steal: REDO logging required, No Steal
constrains buffer manager

No Force, Steal: REDO and UNDO logging required, only
constraint on buffer management is WAL

Cheriton School of Computer Science CS448 Database Systems Implementation (Winter 2012)



Transactions

Enforcing WAL

• each log entry is assigned a log sequence number
(LSN)

• log manager tracks safeLSN, the largest LSN among
log entries that have been flushed to disk

• for each page p, buffer manager tracks pageLSN(p),
the LSN of the most recent update applied to p

• buffer manager may not flush a dirty page p to disk
unless pageLSN(p) ≤ safeLSN

Cheriton School of Computer Science CS448 Database Systems Implementation (Winter 2012)



Transactions

Introduction to ARIES

• ARIES has the same goal (durable, failure-atomic
transactions) as the simple logging technique already
described, but tries to achieve it with less impact on
transaction performance during normal (non-failure)
operation

• some differences between ARIES and simple
technique

• ARIES allows fine-grained (i.e., record-level) locking
• ARIES allows operational logging
• ARIES supports non-idempotent log operations
• ARIES supports fuzzy checkpointing
• ARIES recovery uses three log passes, not two

Cheriton School of Computer Science CS448 Database Systems Implementation (Winter 2012)



Transactions

Physical State Logging

s0

Op1
−→ s1

• REDO log info for Op1 consists s1, the after-image of
the affected object (e.g., page)

• UNDO log info for Op1 consists of s0, the before-image
of the affected object

• the object (page) must remain locked until Op1’s
transaction commits, to avoid lost updates

• log entries are idempotent: REDOing Op1 multiple
times has the same effect as REDOing it one time.
Same for UNDO.

Cheriton School of Computer Science CS448 Database Systems Implementation (Winter 2012)



Transactions

(Page-level) Operational Logging

s0

Op1
−→ s1

• REDO log info for Op1 consists of a description of Op1

• UNDO log info for Op1 consists of a description of a
compensating operation for Op1.

• the affected object (page) need not remain locked
until Op1’s transaction commits

• log entries may not be idempotent

Cheriton School of Computer Science CS448 Database Systems Implementation (Winter 2012)



Transactions

Eventually Exactly Once Execution

• recall that ARIES tracks pageLSN(p) for each page p
• suppose the ARIES is REDOing a logged operation,

with LSN = n, on page p
• ARIES will only REDO the operation if n > pageLSN(p),

otherwise the page already reflects the effects of the
operation.

Cheriton School of Computer Science CS448 Database Systems Implementation (Winter 2012)



Transactions

Rolling Back Transactions in ARIES

CLR1CLR2CLR3Op1 Op2 Op3

log sequence numbers

lower (older) higher (newer)

• each compensation is logged and gets a LSN
• CLR = compensation log record
• compensations are never undone

Cheriton School of Computer Science CS448 Database Systems Implementation (Winter 2012)



Transactions

Checkpointing in ARIES

• ARIES checkpoints periodically during normal
operation

• checkpointing involves logging checkpoint
information including:

• list of active transactions
• LSN of most recent log record for each active

transaction
• list of dirty buffered pages, including their recLSNs.

• recLSN(p) is the LSN of the update that made p dirty,
• there is no need to quiesce transactions
• there is no need to flush any pages to the disk - the

buffer manager can do this any time (as long as WAL
is observed), asynchronously

• called fuzzy checkpointing: no sharp log boundary

Cheriton School of Computer Science CS448 Database Systems Implementation (Winter 2012)



Transactions

Recovery in ARIES

Analysis Pass: • start at most recent complete
checkpoint

• redoLSN is minimum recLSN(p) of pages
in the checkpointed dirty page list

• scan forward to identify losers and the
most recent LSN for each

REDO Pass: • start at redoLSN
• scan forwards, redoing all updates,

including compensations and loser
updates

UNDO Pass: • scan backwards, perform
compensations for uncompensated
updates of losers

Cheriton School of Computer Science CS448 Database Systems Implementation (Winter 2012)



Transactions

ARIES Log Example
log head → 1, T0,Pd ,update,prev=NULL

2, T1,Pb,update,prev=NULL
3, T2,Pc,update,prev=NULL
checkpoint: active=T0(1),T1(2),T2(3),

dirty=Pc(3),Pd(1)
4, T1,Pa,update,prev=2
5, T1,commit
6, T2,Pa,update,prev=3
7, T2,CLR for LSN=6,prev=3
8, T3,Pb,update,prev=NULL
9, T3,Pc,update,prev=8
10, T2,CLR for LSN=3,prev=NULL
11, T2,abort
12, T4,Pa,update,prev=NULL

log tail → 13, T3,commit

Cheriton School of Computer Science CS448 Database Systems Implementation (Winter 2012)


	Transactions

