Transactions

Problems Caused by Failures

o Update all account balances at a bank branch.

Accounts (Anum, CId, BranchId, Balance)

Update Accounts
Set Balance = Balance * 1.05
Where BranchId = 12345

Partial Updates - Lack of Afomicity

If the system crashes while processing this update, some,
but not all, tuples with BranchId = 12345 may have
been updated.

Cheriton School of Computer Science CS448 Database Systems Implementation (Winter 2012)

Transactions

Another Failure-Related Problem

o fransfer money between accounts:

Update Accounts
Set Balance = Balance - 100
Where Anum = 8888

Update Accounts
Set Balance = Balance + 100
Where Anum = 9999

Partial Updates - Lack of Atfomicity

If the system fails between these updates, money may be
withdrawn but not redeposited

Cheriton School of Computer Science CS448 Database Systems Implementation (Winter 2012)

Transactions

Problems Caused by Concurrency

e Application 1:

Update Accounts
Set Balance = Balance - 100
Where Anum = 8888

Update Accounts
Set Balance = Balance + 100
Where Anum = 9999

o Application 2:

Select Sum(Balance)
From Accounts

Lack of Isolation

If the applications run concurrently, the total balance
returned to application 2 may be inaccurate.

Cheriton School of Computer Science CS448 Database Systems Implementation (Winter 2012)

Transactions

Another Concurrency Problem

e Application 1:
Select balance into :balance
From Accounts
Where Anum = 8888

compute :newbalance using :balance

Update Accounts
Set Balance = :newbalance
Where Anum = 8888

o Application 2: same as Application 1

Lost Updates

If the applications run concurrently, one of the updates
may be “lost”.

Cheriton School of Computer Science CS448 Database Systems Implementation (Winter 2012)

Transactions

Transaction Properties
e Transactions are durable, atomic
application-specified units of work.

Atomic: indivisible, all-or-nothing.
Durable: effects survive failures.

The "ACID” Properties

A tomic: a transaction occurs entirely, or not at
all

C onsistent

| solated: a tfransaction’s unfinished changes
are not visible to others

D urable: once it is complete, a transaction’s
changes are permanent

Cheriton School of Computer Science CS448 Database Systems Implementation (Winter 2012)

Transactions

Abort and Commit

Commit: e When a transaction commits, any
updates it made become durable, and
they become visible to other transactions.

o A commit is the “all” in “all-or-nothing”
execution.
e SQL: commit work

Abort: e« When a transaction aborfs any updates it
may have made are undone (erased), as
if the fransaction never ran at all.

e An abort is the "nothing” in
“all-or-nothing” execution.

« SQL: rollback work

o the DBMS may unilaterally abort a running
transaction

Cheriton School of Computer Science CS448 Database Systems Implementation (Winter 2012)

Transactions

Serializability (informail)

e Concurrent fransactions must appear to have been
executed sequentially, i.e., one at a time, in some
order.

e If T; and T; are concurrent fransactions, then either:

 T; will appear to precede T; , meaning that T; will “see”
any updates made by T; , and T; will not see any

updates made by T; , or
o T; will gppear to follow T; , meaning that T; will see T;'s

updates and T; will not see T;’s.

Cheriton School of Computer Science C8448 Database Systems Implementation (Winter 2012)

Transactions

Concurrency Control

Serializability can be guaranteed by executing
transactions serially, but this may result in poor
performance

Alternative: allow transactions to execute
concurrently, but use a concurrency control protocol
is used to ensure that their execution is serializable
Some tools used by concurrency control protocols:

e block, or delay, operations

e abort fransactions

e multi-versioning
Many concurrency control protocols have been
proposed, based on:

e locking, or

o timestamps, or

o conflict analysis

Cheriton School of Computer Science CS448 Database Systems Implementation (Winter 2012)

Transactions

Two-Phase Locking

e The rules

1. Before a transaction may read or write an object, it
must have a lock on that object.

e a shared lock is required to read an object
e an exclusive lock is required to write an object

2. Two or more transactions may not hold conflicting
locks on the same object at the same time

e exclusive locks conflict with exclusive and shared locks
e shared locks do not conflict with other shared locks

3. Once a fransaction has released (unlocked) any
object, it may not obtain any new locks.

e Phase 1. acquiring locks, Phase 2: releasing locks
e |nstrict 2PL, all locks are held until commit or abort.

If all fransactions use two-phase locking, the execution
history is guaranteed to be serializable.

Cheriton School of Computer Science CS448 Database Systems Implementation (Winter 2012)

Transactions

Transaction Blocking

« Consider the following sequence of events:
e T acquires a shared lock on x and reads x
o T, attempts to acquire an exclusive lock on x (so that it
can write x)
« The two-phase locking rules prevent T, from acquiring
its exlusive lock - this is called a lock confiict.
o Lock conflicts can be resolved in one of two ways:

1. T, can be blocked - forced to wait until T; releases its
lock

2. Ty can be pre-empted - forced to abort and give up
its locks

Cheriton School of Computer Science CS448 Database Systems Implementation (Winter 2012)

Transactions

Deadlocks

» transaction blocking can result in deadlocks

o for example:

e T, reads object x
e T, reads object y
o T, attempts to write object x (it is blocked)
o T, attempts to write object y (it is blocked)

A deadlock can be resolved only by forcing one of the
fransactions involved in the deadlock to abort.

Cheriton School of Computer Science CS448 Database Systems Implementation (Winter 2012)

Transactions

Serializability Theory: A Brief Detour

¢ A transaction is a sequence of read and write
operations.

« An execution history over a set of fransactions Ty ... T,
is an interleaving of the the operations of Ty ... T in
which the operation ordering imposed by each
transaction is preserved.

o Two operations conflict if;

o they belong to different transactions
o they operate on the same object
o atleast one of the operations is a write

Cheriton School of Computer Science C8448 Database Systems Implementation (Winter 2012)

Transactions

Serial and Serializable Histories

I =wx]wilyl. To = n[X] r[y]
An interleaved execution of Ty and T,:
Ha = wr[X] 2[X] w1 [y] 12y
An equivalent serial execution of T and To:
Hp = wr[x] w1ly] R[x] r2[y]
An interleaved execution of Ty and T, with no
equivalent serial execution:

He = wr[x] i[X] roly] waly]

Hg is serializable because it is equivalent to H,, , a serial
schedule. H. is not serializable.

Cheriton School of Computer Science CS448 Database Systems Implementation (Winter 2012)

Transactions

Testing for Serializability

n[x] r3[x] waly] r2[u] walz] n[y] r3[u] r2[2] wa(2] 13]2] (2] waly]

Is this history serializable?

Serialization Graph

A history is serializable iff its serialization graph is acyclic.

Cheriton School of Computer Science CS448 Database Systems Implementation (Winter 2012)

Transactions

Serialization Graphs

n[x] 3[x] waly] p[u] walz] n[y] r3u] 2[2] wa(2] r3]2] (2] waly]

The history above is equivalent to

waly] wa(2] io[u] R[z] wa(Z] n[X] nly] nlzlrs[X] rs[u] (2] waly]

That is, it is equivalent to executing T, followed by T,
followed by T; followed by T;.

Cheriton School of Computer Science CS448 Database Systems Implementation (Winter 2012)

Transactions

Two-Phase Locking Revisited

e« How does 2PL ensure serializability?
« Consider again non-serializable H:
He = wi[X] [X] [y] waly]
» 2PL prevents non-serializable histories by blocking

(and hence reordering) operations that might lead to
non-serializability

e 2PL can be too conservative - it may also prevent
some serializable histories from occurring

Hoa = Wy [X] r2[X] way] Y]

Cheriton School of Computer Science C8448 Database Systems Implementation (Winter 2012)

Transactions

Phantoms
Transaction 2:

Transaction 1: Select =
From Employee
Insert Into Employee Where WorkDept = ‘D11’

Values (7123",’Shel’,
"Jetstream’,’D11’,52000) Select «*
From Employee
Where Salary > 50000

e Transaction 2 may observe a phantom tuple, not
possible in a serial execution.

» 2PL of database records (or pages) may not be
enough to ensure serializability in the presence of
insertions or delations.

Cheriton School of Computer Science CS448 Database Systems Implementation (Winter 2012)

Transactions

Insertions, Deletions and Serializability

e Queries must conflict with (and hence “lock”) all
tuples that satisfy the query predicates, including
previously-deleted or to-be-inserted tuples that are
not currently in the database.

o One solutfion: relation-level locks

o Another solution: index key-range locking

e consider query with predicate WworkDept = D11’

e suppose there is an index on WorkDept

e query locks index key range covering ‘D117,
preventing insertions in that range

Cheriton School of Computer Science C8448 Database Systems Implementation (Winter 2012)

Transactions

Multi-Granularity Locking

« allow transactions to lock entire relation, or individual
records in the relation, as appropriate

o before locking smaller granules (e.g., records), set
infention-mode locks on the containing larger granule
(e.g.. relation)

 lock conflict table, including intention-mode locks

LX] S| X]S
X||no| no| no | no
S|no|yes| no |yes
X || no | no | yes | yes
IS || no | yes | yes | yes

e [X = intention exclusive, IS = intention shared

Cheriton School of Computer Science CS448 Database Systems Implementation (Winter 2012)

Transactions

Snapshot Isolation (S)

e every transaction T “sees” a snapshot of the
database

e T’s snapshot includes updates made by all
transactions that committed before T starts

o T’'s snapshot does not included any updates made by
concurrent transactions

e each transaction sees its own updates

e concurrent tfransactions may not perform conflicting
updates

Sl vs. serializability

Pro: read-only fransactions never block

Con: potential anomalies from non-serializable
behavior

Cheriton School of Computer Science CS448 Database Systems Implementation (Winter 2012)

Transactions

Implementing Snapshot Isolation

o mulfi-versioning
o if transaction T updates object (e.g, page) p.
concurrent fransactions must continue to see
pre-update version of p

o detecting write-write conflicts

e can be done using write locks (no need for read locks)
e can be done using commit-time validation

e each transaction T maintains a list of updated objects
(e.g. pages)

e when T trys to commit, ensure no already-committed
concurrent fransactions updated any of the same
objects. If no conflicts, commit T else abort T.

e implements a first committer wins rule for concurrent
conflicting upates

Cheriton School of Computer Science CS448 Database Systems Implementation (Winter 2012)

Transactions

Recovery Management

Recovery management means:

¢ implementing voluntary or involuntary rolllback of
individual fransactions

e implementing recovery from system failures so that
tfransaction ACID properties are guaranteed
e system failure means:
o the database server is halted
e processing of in-progress SQL command(s) is halted
e connections to application programs (clients) are
broken.
e contents of memory buffers are lost

Cheriton School of Computer Science CS448 Database Systems Implementation (Winter 2012)

Transactions

Failures and Transactions

¢ To ensure that tfransactions are atomic, every
transaction that is active when a system failure occurs
must either be
o restarted after the failure from the point it which it left
off, or
o rolled back after the failure
o [t is difficult fo restart applications after a system
failure, so the recovery manager does the following:
e abort fransactions that were active at the time of the
failure
¢ ensure that changes made by transactions that
committed before the failure are not lost

Cheriton School of Computer Science CS448 Database Systems Implementation (Winter 2012)

Transactions

Buffers and Persistent Storage

Client Client
lib lib

\DBMS/‘
RS

TIL

buffer cache

Cheriton School of Computer Science CS448 Database Systems Implementation (Winter 2012)

Transactions

Committing a Transaction

e Suppose that a running transaction results in the
following sequence of events:

update page Pq
update page Py,
update page P.
update page Py
commit

o How should this transaction be committed?

Cheriton School of Computer Science

C8448 Database Systems Implementation (Winter 2012)

Transactions

Logging

Client Client
hb hb

e logis an append-only list

DBMS of log records
@ ¢ log tail (most recent
/ BUFFER entries) is in memory
I l [N e |og entries are flushed from

buffer cache

log buffer to disk in order

» log entries are flushed in
batches when possible

‘J—'

Cheriton School of Computer Science CS448 Database Systems Implementation (Winter 2012)

Transactions

Committing a Transaction Using Logging

Events for fransaction T: Logging for T:

e update page Pq e log updated state of Py
update page Py, log updated state of Py
update page P. log updated state of P
update page Py log updated state of Py
commit log commit record for T

e ensure the commit record is on disk before
acknowledging commit to application

» buffer manager need not flush updated pages to disk
e use log records to restore effects of T affer a failure

Cheriton School of Computer Science CS448 Database Systems Implementation (Winter 2012)

Transactions

UNDO Logging and WAL

« the previous example illustrated REDO logging

¢ each log entry describes how to re-apply an update
that has been lost

o REDO logging is used to ensure durability of
committed updates
« UNDO logging is also useful

e an UNDO log entry describes how to erase or undo an
update that has already been applied

« UNDO logging is used to ensure that the effects of
aborted transactions are erased.

Write-Ahead Logging (WAL) Protocol

The WAL protocol requires that the log record describing
an update be on persistent storage before the update
itself is on persistent storage.

Cheriton School of Computer Science CS448 Database Systems Implementation (Winter 2012)

Transactions

Log Example

loghead — Tybegin
(oldest part of the loQ) I9.P4.00.0,
T, .begin
T1.Pp.bg.b7
I, begin
TQ,PC,Co,C]
T1 ,Pa,Oo,O]
T, .commit
T3.begin
on disk I, .abort
in memory I3.Pp.b1.by
T4 begin
(newest part of the loQ) T4.Pq.01.05
log tail — T3,commit

Cheriton School of Computer Science C8448 Database Systems Implementation (Winter 2012)

Transactions

Log-Based Recovery
e on recovery from a failure, use the log to ensure that
the database
o contains the effects of all committed transactions
e does not contain any effects of aborted fransactions
before allowing new fransactions to begin executing
» simple two-pass log-based recovery
Pass 1 (tail fo head): identify losers and winners and
rollback the losers
Pass 2 (head to tail): redo the winners
« this simple log and recovery algorithm assumes
o page-level locking (why??)
o idempotent log records

Transaction Commit

A tfransaction is atomically and durably committed when
its commit log record is flushed to the log disk.

Cheriton School of Computer Science CS448 Database Systems Implementation (Winter 2012)

Transactions

Checkpoints

As the log grows, the time required to recover from a
system failure also grows.
checkpoints are used o reduce the amount of log
data that must be scanned after a system failure.
simple checkpointing algorithm
1. prevent new transactions from starting, and wait for
active transactions to finish

2. flush all modified pages from the buffer pool to the disk
3. truncate the log

simple algorithm is effective but expensive

other checkpointing algorithms try to achieve a
similar effect with less impact on performance

Cheriton School of Computer Science CS448 Database Systems Implementation (Winter 2012)

Transactions

Buffer Management and Transactions

e Force vs. No Force Buffer Management
Force: All of a fransaction’s changes are present
on the disk by the time the transaction
commits.
No Force: Some of a transaction’s changes may not
be on disk by the time the transaction
commits.

» Steal vs. No Steal Buffer Management

Steal: Uncommitted changes may be present
on the disk.
No Steal: Uncommitted changes are never present
on the disk.

Cheriton School of Computer Science CS448 Database Systems Implementation (Winter 2012)

Transactions

Buffer Management and Transactions (cont’d)

Force No Steal: no logging required, but impractical
(why?)

Force,Steal: UNDO logging required, tfransaction commits
are expensive

No Force, No Steal: REDO logging required, No Steal
constrains buffer manager

No Force, Steal: REDO and UNDO logging required, only
constraint on buffer management is WAL

Cheriton School of Computer Science C8448 Database Systems Implementation (Winter 2012)

Transactions

Enforcing WAL

e each log entry is assigned a log sequence number
(LSN)

» log manager tracks safeLSN, the largest LSN among
log entries that have been flushed to disk

» for each page p, buffer manager tracks pageLSN(p).
the LSN of the most recent update applied to p

o pbuffer manager may not flush a dirty page p to disk
unless pageLSN(p) < safeLSN

Cheriton School of Computer Science CS448 Database Systems Implementation (Winter 2012)

Transactions

Introduction to ARIES

¢ ARIES has the same goal (durable, failure-atomic
transactions) as the simple logging technique already
described, but fries to achieve it with less impact on
transaction performance during normal (non-failure)
operation
« some differences between ARIES and simple
technique
¢ ARIES allows fine-grained (i.e., record-level) locking
o ARIES allows operational logging
ARIES supports non-idempotent log operations

ARIES supports fuzzy checkpointing
ARIES recovery uses three log passes, not two

Cheriton School of Computer Science C8448 Database Systems Implementation (Winter 2012)

Transactions

Physical State Logging

Op;,
S — §

» REDO log info for Op; consists s, the after-image of
the affected object (e.g., page)

* UNDO log info for Op; consists of 53, the before-image
of the affected object

« the object (page) must remain locked until Op;’s
transaction commits, to avoid lost updates

 log entries are idempotent: REDOIng Op; multiple
times has the same effect as REDOing it one fime.
Same for UNDO.

Cheriton School of Computer Science C8448 Database Systems Implementation (Winter 2012)

Transactions

(Page-level) Operational Logging

Op;,
So —

REDO log info for Op; consists of a description of Op;

UNDO log info for Op; consists of a description of a
compensating operation for Op;.

the affected object (page) need not remain locked
until Op,’s transaction commits

log entries may not be idempotent

Cheriton School of Computer Science CS448 Database Systems Implementation (Winter 2012)

Transactions

Eventually Exactly Once Execution

« recall that ARIES tracks pageLSN(p) for each page p

» suppose the ARIES is REDOiIng a logged operation,
with LSN = n, on page p

o ARIES will only REDO the operation if n > pageLSN(p).
otherwise the page already reflects the effects of the
operation.

Cheriton School of Computer Science C8448 Database Systems Implementation (Winter 2012)

Transactions

Rolling Back Transactions in ARIES

lower (older) higher (newer)

>

log sequence numbers

' i]

Opl Op2 Op3 CLR3 CLR2 CLRI

e each compensation is logged and gets a LSN
¢ CLR = compensation log record
e compensations are never undone

Cheriton School of Computer Science C8448 Database Systems Implementation (Winter 2012)

Transactions

Checkpointing in ARIES

¢ ARIES checkpoints periodically during normal
operation

e checkpointing involves logging checkpoint
information including:

o list of active transactions

e LSN of most recent log record for each active
transaction

o list of dirty buffered pages. including their recLLSNs.

» recLSN(p) is the LSN of the update that made p dirty,
e there is N0 need to quiesce transactions

« there is no need to flush any pages to the disk - the
buffer manager can do this any time (as long as WAL
is observed), asynchronously

e cdlled fuzzy checkpointing: no sharp log boundary

Cheriton School of Computer Science C8448 Database Systems Implementation (Winter 2012)

Transactions

Recovery in ARIES

Analysis Pass: e start at most recent complete
checkpoint
e redoLSN is minimum recLSN(p) of pages
in the checkpointed dirty page list
e scan forward to identify losers and the
most recent LSN for each
REDO Pass: e start at redoLSN
« scan forwards, redoing all updates,
including compensations and loser
updates
UNDO Pass: e scan backwards, perform
compensations for uncompensated
updates of losers

Cheriton School of Computer Science C8448 Database Systems Implementation (Winter 2012)

Transactions

ARIES Log Example

loghead — 1, T5.Pgy.update,prev=NULL
2, T1.Pp update prev=NULL
3, I,Pc update prev=NULL
checkpoint: active=Ty(1),11(2),1,(3).
dirty=P(3).P4(1)
4, T, ,Pg.update,prev=2
5, Ty ,commit
6, I ,Pg.update prev=3
7, T5,CLR for LSN=6 prev=3
8, T3Py update prev=NULL
9, I3,Pc update prev=8
10, 75 ,CLR for LSN=3,prev=NULL
11, T,,abort
12, T4.Pg.update,prev=NULL
log tail — 13, Ts,commit

Cheriton School of Computer Science CS448 Database Systems Implementation (Winter 2012)

	Transactions

