Math 237 course note

Chenxuan Wei

 ${\rm May}~2021$

Contents

1	Graphs of Scalar Functions	4
	1.1 Scalar Functions	4
2	Limits	5
	2.1 Definition of a limit	5
	2.2 Limit Theorems	6
	2.3 Proving a Limit Does Not Exist	7
	2.4 Proving a Limit Exists	8
	2.5 Appendix: Inequalities and Absolute Values	9
3	Continuous Functions	10
	3.1 Definition of Continuous Functions	10
	3.2 The continuity Theorems	11
4	The Linear Approximation and Partial Derivatives	13
	4.1 Partial Derivatives	13
	4.2 Higher-Order Partial Derivatives	14
	4.3 The tangent Plane	15
	4.4 Linear Approximation for $z = f(x, y) \dots \dots \dots \dots$	16
	4.5 Linear Approximation in Higher Dimensions	17
5	Differentiable Function	18
	5.1 Definition of Differentiability	18
	5.2 Differentiability and Continuity	19
	5.3 Continuous Partial Derivatives and Differentiability	20
6	Chain Rule	21
	6.1 Basic Chain Rule in Two Dimensions	21
	6.2 Extensions of the Basic Chain rule	22
	6.3 The Chain Rule for Second Partial Derivatives	23
7	Directional Derivatives and Gradient Vector	24
	7.1 Directional Derivatives	24
	7.2 The gradient Vector in Two Dimensions	25
	7.3 Graident Vector in THree Dimensions	26
8	Taylor Polynomials and Taylor's Theorem	27
	8.1 Taylor Polynomial of Degree 2	27
	8.2 Taylor's formula with Second Degree Remainder	28
	8.3 Grneralizations of the Taylor Polynomial	29

9	Crit	ical Points	30		
	9.1	Local Extrema and Critical Points	30		
	9.2	Second Derivative Test	31		
	9.3	Convex Functions	32		
	9.4	Proof of the Second Partial Derivative Test	33		
10 Optimization Problems					
	10.1	The extreme Value Theorem	34		
	10.2	Algorighm for Extreme Values	35		
	10.3	Lagrage Multiplier Algorithm	36		
11 Coordinate System					
	11.1	PolarC oordinates	37		
	11.2	Cylindrical Coordinates	37		
12	Maj	pping of R^2 into R^2	38		
	12.1	The Geometry of Mappings	38		
13 Jacobians and Inverse Mappings 3					
	13.1	The inverse Mapping Theorem	39		
14 Double Integrals 41					
	14.1	Definition of Double Intergrals	41		
	14.2	Iterated Integrals	42		
	14.3	The Change of Varibale Theorem	43		
15 Triple Integrals 44					
	15.1	Definition of Triple Integrals	44		
	15.2	Iterated Integrals	45		
	15.3	The change of Variable Theorem	46		

1 Graphs of Scalar Functions

1.1 Scalar Functions

1. Scalar function

A function $f: \mathbb{R}^2 \to \mathbb{R}$ is the scalar function with

- Domain $D(f) \subseteq R^2$
- Range: $R(f) \subseteq R \to$ codomain
- 2. Notation: We will use $\underline{\mathbf{x}}$ for element in Rn
- 3. Level curves Let $f : R^2 \to R$, $\mathbf{k} = f(x, y)$ where k is a constant in range of f
- 4. Cross-section

Let $\mathbf{z} = f(x, y)$, then:

- $\mathbf{z} = f(c, y)$
- $\mathbf{z} = f(x, d)$

for constant \boldsymbol{c} and \boldsymbol{d}

5. Level sets

 $= \{ \underline{x} \in R^n | f(\underline{x} = k \} \text{ where } k \in R(f) \}$

2 Limits

2.1 Definition of a limit

1. Neighbourhood

An r-neighbourhood is of a point $(a,b)\in R_2$ is a set of $N_r(a,b)=\{(x,y)\in R^2:||(x,y)-(a,b)||< r\}$ where $r\in R$

2. Remarks:

- $||(x,y) (a,b)|| = \sqrt{(x-a)^2 + (y-b)^2}$
- When r < 0, $N_r(a, b)$ is a empty set, so we usually consider only non-negative values of r.

3. Limit

Assume f(x, y) is defined in a neighbourhood of (a, b), except possibly at (a, b). If $\forall \epsilon > 0, \exists \delta > 0$ such that $0 < ||(x, y) - (a, b)|| < \delta$ implies $|f(x, y) - L| < \epsilon$ Then, $\lim_{(x,y)\to(a,b)} f(x, y) = L$

2.2 Limit Theorems

1. Property of limit

If $\lim_{(x,y)\to(a,b)}f(x,y)$ and $\lim_{(x,y)\to(a,b)}g(x,y)$ both exist, then:

- $\lim_{(x,y)\to(a,b)} [f(x,y)+g(x,y)] = \lim_{(x,y)\to(a,b)} f(x,y) + \lim_{(x,y)\to(a,b)} g(x,y)$
- $\lim_{(x,y)\to(a,b)} [f(x,y)g(x,y)] = [\lim_{(x,y)\to(a,b)} f(x,y)] + [\lim_{(x,y)\to(a,b)} g(x,y)]$
- $\lim_{(x,y)\to(a,b)} \frac{f(x,y)}{g(x,y)} = frac \lim_{(x,y)\to(a,b)} f(x,y) \lim_{(x,y)\to(a,b)} g(x,y)$

2. Uniqueness

If $\lim_{(x,y)\to(a,b)} f(x,y)$ exists, then it is unique.

2.3 Proving a Limit Does Not Exist

- 1. Use Uniqueness to show that the limit is different at different y value
- 2. Let y = f(x) show that the limit is depend on some variable, still against Uniqueness

2.4 Proving a Limit Exists

1. Squeeze Theorem

If $\exists B(x, y)$ such that:

- $\forall (x,y) \neq (a,b), |f(x,y) L| \leq B(x,y)$
- $\lim_{(x,y)\to(a,b)} B(x,y) = 0$

Then, $\lim_{(x,y)\to(a,b)} f(x,y) = L$

The following is a Algorithm for Determine whether $\lim_{(x,y)\to (a,b)}f(x,y)$ exists:

2.5 Appendix: Inequalities and Absolute Values

- 1. Property of Inequalities
 - Trichotomy: $\forall a, b \in R$ one and only one holds:
 - (a) a = b
 - (b) a < b
 - (c) b < a
 - Transitivity: If a < b and b < c, then a < c
 - Addition: If a < b, then $\forall c \in R, a + c < b + c$
 - Multiplication: if a < b and c < 0, then bc < ac
 - Inverse Multiplicative: If ab > 0 and a < b, then $\frac{1}{b} < \frac{1}{a}$

2. Property of Absolute value

- $|a| = \sqrt{a^2}$
- $|a| < b \iff -b < a < b$
- $\forall a, b \in R, |a+b| \le |a|+|b|$
- If c > 0, then a < a + c
- $2|x||y| \le x^2 + y^2$

3 Continuous Functions

3.1 Definition of Continuous Functions

1. Continuous

A function f(x,y) is continuouss \iff $\lim_{(x,y)\to(a,b)} f(x,y) = f(a,b)$ Additionly, if $\forall D \subset R^2$, f is continuous, we say f is continuous on D.

2. The following three requirements must meet:

- $\lim_{(x,y)\to(a,b)} f(x,y)$ exist
- f is defined at (a, b)
- $\lim_{(x,y)\to(a,b)} f(x,y) = f(a,b)$

3.2 The continuity Theorems

1. Basic Functions The following function continuous on their domains:

- The constant function: f(x, y) = k
- The power functions: $f(x, y) = ax^m + by_n$
- The logarithm function: $ln(\cdots)$
- THe exponential function: $e^{(\cdots)}$
- The trignometic functions: $sin(\dots), cos(\dots), \dots$
- The inverse trig functions: $sin^{-1}(\cdots), \ldots$
- THe absolute value function $|\cdots|$
- 2. Operation on Functions
 - Sum f + g is defined by (f + g)(x, y) = f(x, y) + g(x, y)
 - **Product** fg is defined by (fg)(x, y) = f(x, y)g(x, y)
 - Quotient $\frac{f}{g}$ is defined by $\frac{f}{g}(x,y) = \frac{f(x,y)}{g(x,y)}$, given $g(x,y) \neq 0$
- 3. Composite Function

Let $g: R \to R$ and $F: R^n \to R$ be 2 function The function $g \circ f$ is defined by $(g \circ f)(x, y) = g(f(x, y))$ Where $g \circ f: R^n \to R$ and domain $D(g \circ f) = \{(x, y) \in D(f) : f(x, y) \in D(g)\}$

4. Continuity Theorem

Assume f and g are both continuous at (a, b), then:

- f + g and fg are continuous at (a, b)
- $\frac{f}{g}$ is continuous at (a, b)
- $g \circ f$ is continuous at (a, b)

4 The Linear Approximation and Partial Derivatives

4.1 Partial Derivatives

- 1. A scalar Function f(x, y) can be differentiated in two natural ways:
 - Treat y as a constant, we obtain $\frac{df}{dx}$
 - Treat x as a constant, we obtain $\frac{df}{dy}$

2. Partial Derivatives

The partial derivatives of f(x, y) are defined by

• $\frac{df}{dx} = f_x(x, y) = \lim_{h \to 0} \frac{f(x+h, y) - f(x, y)}{h}$ • $\frac{df}{dy} = f_y(x, y) = \lim_{h \to 0} \frac{f(x, y+h) - f(x, y)}{h}$

and these limits always exist

3. Operator notation

•
$$D_1 f = \frac{df}{dx} = f_x$$

•
$$D_2 f = \frac{df}{dy} = f_y$$

4.2 Higher-Order Partial Derivatives

1. Second Partal Derivatives

There are four types of second derivatives

•
$$\frac{d^2f}{dx^2} = \frac{d}{dx}(\frac{df}{dx}) = f_{xx} = D_1^2 f$$

- $\frac{d^2f}{dydx} = \frac{d}{dy}(\frac{df}{dx}) = f_{xy} = D_2D_1f$
- $\frac{d^2f}{dxdy} = \frac{d}{dx}(\frac{df}{dy}) = f_{yx} = D_1D_2f$
- $\frac{d^2f}{dy^2} = \frac{d}{y}\left(\frac{df}{dy}\right) = f_{yy} = D_2^2 f$

2. Clairaut's Theorem

If Both f_{xy} and f_{yx} are defined in some neighborhood of (a, b) and both continuous, then

$$f_{xy}(a,b) = f_{yx}(a,b)$$

4.3 The tangent Plane

Let z = f(x, y), the tangent plane at point (a, b, f(a, b)) is

$$z = f(a,b) + \frac{df}{dx}(a,b) \times (x-a) + \frac{df}{dy}(a,b) \times (y-b)$$

4.4 Linear Approximation for z = f(x, y)

1. Review for 1D

Let y = f(x), then Linear approximation at point (a, f(a)) is:

$$L_a(x) = f(a) + f'(a)(x - a)$$

2. For 2D

Let z = f(x, y), the linearization of point (a, b) is

$$L_{(a,b)}(x,y) = f(a,b) + \frac{df}{dx}(a,b) \times (x-a) + \frac{df}{dy}(a,b) \times (y-b)$$

3. Increment form of Linear Approximation

Let z = f(x, y) and suppose we know f(a, b) Let $\Delta x = x - a, \Delta y = y - b$ and $\Delta f = f(x, y) - f(a, b) = \frac{df}{dx}(a, b) \times (x - a) + \frac{df}{dy}(a, b) \times (y - b)$

4.5 Linear Approximation in Higher Dimensions

1. Linear Approximation in \mathbb{R}^3

Let f(x, y, z) be a function, we define the linearization of g at $\vec{v} = (a, b, c)$ by

$$L_{\vec{v}}(x,y,z) = f(\vec{v}) + f_x(\vec{v}) \times (x-a) + f_y(\vec{v}) \times (y-b) + f_z(\vec{v}) \times (z-c)$$

2. Gradient

Suppose that f(x, y, z) have partial derivatives at $\vec{a} \in \mathbb{R}^3$, then The gradient of f at \vec{a} is

$$\nabla f(\vec{a}) = (f_x(\vec{a}), f_y(\vec{a}), f_z(\vec{a}))$$

3. Linearization and Approximation

Let $f(\vec{x}), \vec{x} \in \mathbb{R}^3$ has partial derivatives at $\vec{a} \in \mathbb{R}^3$, then

• The linearization of f at \vec{a} is

$$L_{\vec{a}}(\vec{x}) = f(\vec{a}) + \nabla f(\vec{a}) \times (\vec{x} - \vec{a})$$

• The linear apprioximation of f at \vec{a} is

$$f(\vec{x}) \approx f(\vec{a}) + \nabla f(\vec{a}) \times (\vec{x} - \vec{a})$$

5 Differentiable Function

5.1 Definition of Differentiability

- 1. Differentiability for Functions in One Variable
 - Error of linear approximation:

$$R_{1,a}(x) = g(x) - L_a(x)$$

$$= g(x) - g(a) - g'(a)(x - a)$$

- Theorem 1 If g'(a) exists, then $\lim_{x \to a} \frac{|R_{1,a}(x)|}{|x-a|} = 0$
- 2. Differentiability for Functions in Two Variables
 - Error of linear approximation

$$R_{1,(a,b)}(x,y) = f(x,y) - L_{(a,b)}(x,y)$$

• Differentiable

A function $f(\boldsymbol{x},\,\boldsymbol{y})$ is differentiable at $(a,\,b)$ if

$$\lim_{(x,y)\to(a,b)}\frac{|R_{1,(a,b)}(x,y)|}{||(x,y)-(a,b)||} = 0$$

where

$$R_{1,(a,b)}(x,y) = f(x,y) - L_{(a,b)}(x,y)$$

• Theorem 2

If a function f(x, y) satisfies

$$\lim_{(x,y)\to(a,b)}\frac{|f(x,y)-f(a,b)-c(x-a)-d(y-b)|}{||(x,y)-(a,b)||} = 0$$

for some constants **c** and **d** then $c = f_x(a, b)$ and $d = f_y(a, b)$

3. Tangent Plane

Let function f(x, y) be differentiable at (a, b), the tangent plane of z = f(x, y) at (a, b, f(a, b)) is the graph of linearization which

$$z = f(a,b) + \frac{df}{dx}(a,b)(x-a) + \frac{df}{dy}(a,b)(y-b)$$

5.2 Differentiability and Continuity

- 1. Theorem 1
 - if f(x, y) is differentiable at (a, b), then f is continuous at(a, b).
- 2. And that's it. Why this is a seperate lecture???????

Continuous Partial Derivatives and Differentiability 5.3

1. The Mean Value Theorem

If f(x) is

- Continuoues on closed interval $[x_1, x_2]$
- Differentiable on the open interval (x_1, x_2)

Then, $\exists x_0 \in (x_1, x_2)$ such that

$$f(x_2) - f(x_1) = f'(x_0)(x_2 - x_1)$$

2. Theorem 2

If partial derivatives $\frac{df}{dx}$ and $\frac{df}{dx}$ are both continuous at (a, b), then f(x, y) is definerentiable at (a, b)

3. Differentiability for $f: \mathbb{R}^n \to \mathbb{R}$ A function $f : \mathbb{R}^n \to \mathbb{R}$ is differentiable at a point $\vec{a} = (a_1, \dots, a_n)$ if:

$$\lim_{\vec{x} \to \vec{a}} \frac{|f(\vec{x}) - f(\vec{a}) - L_{\vec{a}}(\vec{x} - \vec{a})|}{||\vec{x} - \vec{a}||} = 0$$

where $L: \mathbb{R}^n \to \mathbb{R}$ is a linear transformation

6 Chain Rule

6.1 Basic Chain Rule in Two Dimensions

1. Basic chain rule for R

$$T'(t) = f'(x(t))x'(t)$$

or

$$\frac{dT}{dt} = \frac{dT}{dx} * \frac{dx}{dt}$$

2. Chain rule for f(x(t), y(t))Let G(t) = f(x(t), y(t)) and Let $a = x(t_0)$ and $b = y(t_0)$ If f is differentiable at (a, b) and $x'(t_0)$ and $y'(t_0)$ Then $G'(t_0)$ exists and equals

$$G^{'}(t_{0}) = f_{x}(a,b)x^{'}(t_{0}) + f_{y}(a,b)y^{'}(t_{0})$$

- 3. If g(s,t) = f(x,y) and $x(s,t) = \dots$ and $y(s,t) = \dots$ then, $g_s(s,t) = f_x(u(s,t), v(s,t))u_s(s,t) + f_y(u(s,t), v(s,t))v_s(s,t)$
- 4. Vector From of basic chain rule Let f(x, y), x(t) and y(t) all be differentiable, define T(t) = f(x(t), y(t)), then dT

$$\frac{dT}{dt} = \nabla f * \frac{d\vec{x}}{dt}$$

and

$$\frac{d}{dt}f(\vec{x}(t)) = \nabla f(\vec{x}(t)) * \frac{d\vec{x}}{dt}(t)$$

with $\vec{x}(t) = (x_1(t), x_2(t))$

6.2 Extensions of the Basic Chain rule

- 1. Dependence Tree with one independent variable Let u = f(x, y) with differentiable function x(t) and y(t) then
 - Dependent variable: u
 - Intermediate variables: x, y
 - Independent variables: t

Such that the trree is like:

and the formula is

$$\frac{du}{dt} = \frac{du}{dx}\frac{dx}{dt} + \frac{du}{dy}\frac{dy}{dt}$$

- 2. Dependence Tree with more independent variable Let u = f(x, y) with x = x(s, t) and y = y(s, t) have first order partial derivatives at (s, t) and f is differentiable at (x, y) = (x(s, t)y, (s, t))
 - Dependent variable: u
 - Intermediate variables: x, y
 - Independent variables: t, s

The tree is like

6.3 The Chain Rule for Second Partial Derivatives

3. Laplace's equation

$$u_{xx} + u_{yy} = 0$$

4. Remark

Let z = f(x) and $x = e^u$

•
$$z'(u) = f'(e^u)e^u$$

•
$$z''(u) = x^2 f''(x) + x f'(x)$$

7 Directional Derivatives and Gradient Vector

7.1 Directional Derivatives

1. Directional Derivatives

The directional derivative of f(x, y) at point (a, b) in the direction of a unit vector $\vec{u} = (u_1, u_2)$ where $||\vec{u}|| = 1$

$$D_{\vec{u}}f(a,b) = \frac{d}{ds}f(a+su_1,b+su_2)|_{s=0}$$

2. Directional Derivative Theorem

If f(x, y) is differentiable at (a, b) and $\vec{u} = (u_1, u_2)$ where $||\vec{u}|| = 1$, then

$$D_{\vec{u}}f(a,b) = \nabla f(a,b)\vec{u}$$

where the middle part is a dot produce.

7.2 The gradient Vector in Two Dimensions

1. The greatest rate of change theorem (GRC) If f(x, y) is differentiable at (a, b) and $\nabla f(a, b) \neq (0, 0)$, then the largest value of

 $D_{\vec{u}}f(a,b)$ is $||\nabla f(a,b)||$ and or rurs when \vec{u} is in the direction of $\nabla f(a,b)$

2. Orthogonality Theorem

If $f(x,y) \in C^1$ in a neighborhood of (a, b) and $\nabla f(a,b) \neq (0,0)$ then $\nabla f(a,b)$ is orthogonal to the level curve of f(x,y) = k through (a,b,k)

7.3 Graident Vector in THree Dimensions

1. Orthgonality Theorem in Three Dimensions

If $f(x, y, z) \in C_1$ in the neighborhood of (a, b, c) and $\nabla f(a, b, c) \neq (0, 0, 0)$, then it is orthogonal to the level surface f(x, y, z) = k through (a, b, c)

8 Taylor Polynomials and Taylor's Theorem

8.1 Taylor Polynomial of Degree 2

1. Single Variable Case for Taylor For degree 2 point a taylor polynomial

$$P_{2,a}(x) = f(a) + f'(a)(x-a) + \frac{1}{2}f^{\prime\prime}(a)(x-a)^2 = L_a(x) + \frac{1}{2}f^{\prime\prime}(a)(x-a)^2$$

2. Two variable Case for Taylor Polynomial

$$P_{2,(a,b)}(x,y) = f(a,b) + f_x(a,b)(x-a) + f_y(a,b)(y-b) + \frac{1}{2} [f_{xx}(a,b)(x-a)^2 + 2f_{xy}(a,b)(x-a)(y-b) + f_{yy}(a,b)(y-b)^2]$$

3. Hessian Matrix

$$Hf(x,y) = \left(\begin{array}{cc} f_{xx}(x,y) & f_{xy}(x,y) \\ f_{yx}(x,y) & f_{yy}(x,y) \end{array}\right)$$

8.2 Taylor's formula with Second Degree Remainder

- 1. Taylor Remainder for single Variable Function
 - if f''(x) exists on [a, x], then there exists a number c between a and x such that

$$f(x) = f(a) + f'(a)(x - a) + R_{1,a}(x)$$

where

$$R_{1,a}(x) = \frac{1}{2}f''(c)(x-a)^2$$

2. Taylor's Theorem for Function of Two Variables If $f(x, y) \in C^2$ in some neighborhood N(a, b) of (a, b), then for all $(x, y) \in N(a, b)$ there exists a point (c, d) on the line segment joining (a, b) and (x, y) such that

$$f(x,y) = f(a,b) + f_x(a,b)(x-a) + f_y(a,b)(y-b) + R_{1,(a,b)}(x,y)$$

where

$$R_{1,(a,b)}(x,y) = \frac{1}{2} [f_{xx}(c,d)(x-a)^2 + 2f_{xy}(c,d)(x-a)(y-b) + f_{yy}(c,d)(y-b)^2]$$

3. Corollary

If $f(x, y) \in C^2$ in some closed neighborhood N(a, b) of (a, b), then there exists a positive constant M such that

$$|R_{1,(a,b)}(x,y)| \le M ||(x,y) - (a,b)||^2, \forall (x,y) \in N(a,b)$$

8.3 Grneralizations of the Taylor Polynomial

1. Multi-Index Notation

If $f \in C^k$ is a function of n variables, we can drite k th order partial derivative of $f(x_1, \ldots, x_n)$ is

$$d^a f = (\frac{d}{dx_1})^{a_1} \times \ldots \times (\frac{d}{dx_n}) f$$

where a is multi-index and $a = (a_1 \dots a_n)$, the order is $k = \sum a_i = |a|$ and $a! = a_1! \times \dots \times a_n!$

2. k-th degree Taylor polynomial is defined as

$$P_{k,(a,b)}(x,y) = \sum_{|a| \le k} (d^a f)(a,b) \frac{[(x,y) - (a,b)]^a}{a!}$$

3. Theorem 1L Taylor's Theorem of order k If $f(x, y) \in C^{k+1}$ in some neighbourhood N(a, b), then $\forall (x, y) \in N(a, b), \exists$ a point (c, d) on the line segment between (a, b) and (x, y) such that

$$f(x,y) = P_{k,(a,b)}(x,y) + R_{k,(a,b)}(x,y)$$

where

$$R_{k,(a,b)}(x,y) = \sum_{|a|=k+1} d^a f(c,d) \frac{[(x,y) - (a,b)]^a}{a!}$$

4. Corollary If $f(x, y) \in C^k$ then

$$\lim_{(x,y)\to(a,b)}\frac{|f(x,y) - P_{k,(a,b)}(x,y)|}{||(x,y) - (a,b)||^k} = 0$$

9 Critical Points

9.1 Local Extrema and Critical Points

- 1. Local Max and Min A point (a, b) is
 - Local max if $f(x, y) \le f(a, b) \forall (x, y)$ in neighborhood of (a, b)
 - Local min if $f(x,y) \ge f(a,b) \forall (x,y)$ in neighborhood of a,b

2. Theerem 1

If (a, b) is a local extrema, then $f_x(a, b) = f_y(a, b) = (0 or DNE)$

3. Critical POint

A point (a, b) in the domain of f(x, y) is called a critical point of f if $f_x(a, b) = 0 = f_y(a, b)$ or one of f_x or f_y DNE at (a, b)

4. Saddle Point

A critical point (a, b) of f(x, y) is called a saddle point of f if in every neighborhood of (a, b) there exists points (x_1, y_1) and (x_2, y_2) such $f(x_1, y_1) > f(a, b)$ and $f(x_2, y_2) < f(a, b)$

9.2 Second Derivative Test

- 1. Quadratic Froms A function Q of the form $Q(u, v) = a_{11}u^2 + 2a_{12}uv + a_{22}v^2$ where a_{ii} is constants
- 2. Derterminant and Quadratic forms
 - Positive definite if det(A) > 0 and $a_{11} > 0$
 - Negative definite if det(A) > 0 and $a_{11} < 0$
 - Indifinite if det(A) < 0
 - Semidefinite if det(A) = 0

3. Hessian Matrix Hf(a, b) = $\begin{pmatrix} f_{xx}(a,b) & f_{xy}(a,b) \\ f_{xy}(a,b) & f_{yy}(a,b) \end{pmatrix}$

- 4. Determinant and Quadratic Forms $Q(u, v) = a_{11}u^2 + 2a_{12}uv + a_{22}v^2$
 - Positive definite : if det(A) > 0, and $a_{11} > 0$
 - Negative definite: det(A) > 0 and $a_{11} < 0$
 - Indefinite: det(A) < 0
 - Semidefinite: det(A) = 0

5. Second Partical Derivatives Test

Suppose that $f(x,y) \in C^2$ in some neighborhood of (a, b) and that $f_x(a,b) = 0 = f_y(a,b)$

- if Hf(a, b) is positive definite, then(a, b) is a local minimum
- if Hf(a, b) is negative definite, then (a, b) is a local maximum
- if Hf(a, b) is indifinite, then (a, b) is a saddle point
- if Hf(a, b) is semidefinite, then the test is inconclusive

9.3 Convex Functions

- 1. Convex and stritly convex functions of one variable A twice differentiable function f(x) is convex if $f''(x) \ge 0$ for all x and f is strictly convec if f''(x) > x for all x, which means concave up
- 2. Theorem 1 :Properties of convex functions of one variable If $f(x) \in C^2$ and is strictly convec, then
 - $f(x) > L_a(x) = f(a) + f'(x)(x-a)$ for all $x \neq a$, for any $a \in R$
 - For a < b, $f(x) < f(a) + \frac{f(b) f(a)}{b a}(x a)$ for $x \in (a, b)$
- 3. Convec and strictly convex functions of two variables Let f(x, y) have continuous second partial derivatives. We say that f is convex if Hf(x, y) is positive semi-definite for all (x, y) and f is strictly convex if Hf(x, y) is positive definite for all (x, y).
- 4. Theorem 2: Properties of convex functions of two variables If f(x, y) has continuous second partial derivatives and is strictly convex, then
 - $f(x,y) > L_{(a,b)}(x,y)$ for all $(x,y) \neq (a,b)$ and
 - $f(a_1 + t(b_1 a_1), a_2 + t(b_2 a_2)) < f(a_1, a_2) + t[f(b_1, b_2) f(a_1, a_2)]$ for 0 ;
- 5. Theorem 3: Critical Points of convex and strictly convex functions
 - if $f(x,y) \in C^2$ is convec, then every critical point(c, d) satisfies $f(x,y) \geq f(c,d)$ for all $(x,y) \neq (c,d)$
 - If $f(x,y) \in C^2$ is strictly convec and has a critical point(c,d) then $f(x,y) \geq f(c,d)$ for all $(x,y) \neq (c,d)$ and f has no other critical point

9.4 Proof of the Second Partial Derivative Test

1. Lemma 1

Let

$$\left(\begin{array}{cc} a & b \\ c & d \end{array}\right)$$

be a positive definite matrix, if |a'-a|, |b'-b|, |c'-c| are sufficiently small, then

$$\left(\begin{array}{cc}a'&b'\\c'&d'\end{array}\right)$$

is positive definite

10 Optimization Problems

10.1 The extreme Value Theorem

1. Absolute Max and Min for one variable

- Absolute Max of f on I for a point $x = c \in I$ if $\forall x \in I, f(x) \leq f(c)$
- Absolute Min of f on I for a point $x = c \in I$ if $\forall x \in I, f(x) \ge f(c)$
- 2. The extreme Value theorem for one variable If f(x) is continuous on finite closed intervial I, then $\exists c_1, c_2 \in I$ such $f(c_1) \leq f(x) \leq f(c_2) \forall x \in I$
- 3. Absolute Max and Min for two variable
 - Absolute Max of f on I for a point $x = (a, b) \in I$ if $\forall x \in I, f(x, y) \leq f(a, b)$
 - Absolute Min of f on I for a point $x = (a, b) \in I$ if $\forall x \in I, f(x, y) \ge f(a, b)$
- 4. Bounded Set

A set $S \in \mathbb{R}^2$ is said to be bounded \iff it contain some neighbourhood of the origin

5. Boundary Point

Given a set $S \subseteq R^2$, a point $(a, b) \in S^2$ is said to be a boundary point of S \iff every neighbourhood contain at least one point in S and one point not in S

- 6. Boundary of S B(S) contain all Boundary Point of S
- 7. Closed Set A set $S \subseteq R^2$ is said to be closed if S contain all boundary points
- 8. Extreme value theorem for two variables

If f(x, y) is continuous on a closed and bounded set $S \subseteq S^2$, then there exist points $(a, b), (c, d) \in S$ such $f(a, b) \leq f(x, y) \leq f(c, d) \forall (x, y) \in S$

10.2 Algorighm for Extreme Values

- 1. Check if $S \subseteq R^2$ is closed and bounded
- 2. check it f(x, y) is continuous
- 3. Next Finad all critical points of S
- 4. evaluate f at each point
- 5. Fined max and min value s of f aon B(S)
- 6. The max of f on S is the largetst value found in step 4 and 5 and min is the same

10.3 Lagrage Multiplier Algorithm

Assume that f(x, y) is a differentiable function and $g \in C^1$. To find the max and min of f subject of the constraint g(x, y) = kEvaluate f(x, y) at all points(a, b) which satisfy one of the following

- $\nabla f(a,b) = \lambda \nabla g(a,b)$
- $\nabla g(a,b) = (0,0)$
- (a,b) is an end point of g(x,y) = k

11 Coordinate System

11.1 PolarC oordinates

1. Definitions

- Pole: the origin of a polar plane
- Polar axis: a ray drawed from the pole
- (r, θ) is a coordinate from the polar plane
- 2. Relationship with Cartesian Coordinates
 - $x = r * cos\theta$
 - $y = r * sin\theta$
 - $r = \sqrt{x^2 + y^2}$
 - $\theta = tan^{-1}(\frac{y}{x})$
- 3. Area of sector

$$= \frac{1}{2} * r^2 * (\theta_2 - \theta_1)$$

11.2 Cylindrical Coordinates

12 Mapping of R^2 into R^2

12.1 The Geometry of Mappings

1. Vector-valued Function

A function Whose domain is a subset of \mathbb{R}^n and whose codomain is \mathbb{R}^m is called a vector -valued function

2. Mapping

A $\hat{R^n} - > R^n$ vector calued function is a mapping

13 Jacobians and Inverse Mappings

13.1 The inverse Mapping Theorem

- 1. Invertible Mapping and Inverse Mapping Let F be a mapping from set D_{xy} on set D_{uv} . If there exists a mapping of F^{-1} , called the inverse of F, which maps D_{uv} onto D_{xy} such that $(x, y) = F^{-1}(u, v) \iff (u, v) = F(x, y)$ then F is invertible on D_{xy}
- 2. One-to-One(injective) A mapping F from $R^2 \to R^2$ is said to be one-to-one (or injective) on a set $D_{xy} \iff F(a,b) = F(c,d)$ implies $(a,b) = (c,d) \forall (a,b), (c,d) \in D_{xy}$
- 3. One-to-One implies Invertible If F is one-to-one, then F is intervible
- 4. Theorem 2: Inverse of the derivative Matrix Consider a mapping F which maps D_{xy} onto D_{uv} If F has continuous partial derivatives at $\vec{x} \in D_{xy}$ and there exists an inverse mapping F^{-1} of F which has continuous partial derivatives at $\vec{u} = F(\vec{x}) \in D_{uv}$, then $DF^{-1}(\vec{u})DF(\vec{x}) = I$

5. The jacobian

The Jacobian The Jacobian of a mapping (u, v) = F(x, y) = (u(x, y), v(x, y)) is denoted $\frac{d(u,v)}{d(x,y)}$, and is defined by $\frac{d(u,v)}{d(x,y)} = \frac{du}{dx} \times \frac{dv}{dy} - \frac{du}{dy} \times \frac{dv}{dx}$

6. Corollary 3

14 Double Integrals

14.1 Definition of Double Intergrals

1. Integrable function

Let $D \subseteq R^2$ be closed and bounded. Let P be a partition of D, and $|\Delta P|$ be the length of the longest side of all rectangle in P.

A function f(x,y) which is bounded on D is integrable on D if all riemann sum approach the same value as $|\Delta P|\to 0$

2. Double Integral

If f(x, y) is integrable on a closed bounded set D, then we define the double integral of F on D as

 $\int \int_D^{\infty} f(x,y) dA = \lim_{\Delta P \to 0} \sum_{i=1}^n f(x_i, y_i) \Delta A_i$

3. Theorem 1 Linearity

If $D \subseteq R^2$ is a closed and bounded set and f and g are two integrable functions on D, then for any constatn c:

- $\int \int_D (f+g) dA = \int \int_D f dA + \int \int_D g dA$
- $\int \int_D cf dA = c \int \int_D f dA$
- 4. Theorem 2 Basic Inequality if $\forall (x, y) \in D, f(x, y) \leq g(x, y)$ then $\int \int_D f dA \leq \int \int_D g dA$
- 5. Theorem 3 Absolute Value Inequality $|\int \int_D f dA| \leq \int \int_D |f| dA$
- 6. Theorem 4 Decomposition Let $D_1 + D_2 = D$, then $\int \int_D f dA = \int \int_{D_1} f dA + \int \int_{D_2} f dA$

14.2 Iterated Integrals

1. Iterated Integrals

Let $D \subseteq R^2$ be defined by $y_l(x) \le y \le y_u(x)$, and $x_l \le x \le x_u$ where both y are continuous, if f(x, y) continuous on D, then $\int \int_D f(x, y) dA = \int_{x_l}^{x_u} \int_{y_l(x)}^{y_u(x)} f(x, y) dy dx$

14.3 The Change of Varibale Theorem

1. The Theorem Let each of D_{uv} and D_{xy} be closed bounded set Let (x, y) = F(u, v) = (f(u, v), g(u, v))be one to one mapping of D_{uv} onto D_{xy} with $f, g \in C^1$ and $\frac{d(x,y)}{d(u,v)} \neq 0$ expect for possibly on a finite collection of piecewise-smooth curves in D_{uv} If G(x, y) is continuous on D_{xy} , then $\int \int_{D_{xy}} G(x, y) dx dy = \int \int_{D_{uv}} G(f(u, v), g(u, v)) |\frac{d(x,y)}{d(u,v)}| du dv$

15 Triple Integrals

15.1 Definition of Triple Integrals

1. Integrable

A function f(x, y, z) which is bounded on a closed bounded set $D \subset R^3$ is said to be integrable on D \iff all Riemann sums approach the same value as $\Delta P \to 0$

2. Triple Integral

if f(x, y, z) is integrable on a closed bounded set D, then we define the triple integral of f over D as

 $\int \int \int_D f(x, y, z) dV = \lim_{\Delta P \to 0} \sum_{i=1}^n f(x_i, y_i, z_i) \Delta V_i$

3. Average Value

Let $D \subset \mathbb{R}^3$ be closed and bounded with volume $V(D) \neq 0$, and let f(x, y, z) be a bounded and integrable function on D. The average value of f over D is defined by $f_{avg} = \frac{1}{V(D)} \int \int \int_D f(x, y, z) dV$

- 4. Properties of Triple Integral
 - Linearty

if $D \subset R^3$ is a closed and boueded set, c is constant, and f and g are two integrable functions on D, then

 $\int \int \int_D (f+g) dV = \int \int \int_D f dV + \int \int \int_D g dV$ $\int \int \int_D c f dV = c \int \int \int_D f dV$

• Basic Inequality If $D \subset R^3$ is a closed and bounded set and f and g are two integrable functions on D

such that $f(x, y, z) \leq g(x, y, z)$ for all $(x, y, z) \in D$, then $\int \int \int_D f dV \leq \int \int \int g dV$

- Absolute Value Inequality if $D \subset R^3$ is a closed and bounded set and f is an integrable function on D, then $|\int \int \int_D f dV| \leq \int \int \int_D |f| dV$
- Decomposition Assume $D \subset R^3$ is a closed and bounded set and f is an integrable function on D. If D is decomposed in two D_1 and D_2 , then

$$\int \int \int_D f dV = \int \int \int_{D_1} f dV + \int \int \int_{D_2} f dV$$

Iterated Integrals 15.2

Let $D \subset R^3$ defined by $z_l(x, y) \leq x \leq z_u(x, y)$ and $(x, y) \in D_{xy}$ where z_l and z_u are continuous functions on D_{xy} and D_{xy} is closed bounded subset in R^2 If f(x, y, z) is continuous, then $\int \int \int_D f(x, y, z) dV = \int \int_{D_{xy}} \int_{z_l(x,y)}^{z_u(x,y)} f(x, y, z) dz dA$

15.3 The change of Variable Theorem

1. Change of Variable Theorem Let x = f(u, v, w), y = g(u, v, w), z = h(u, v, w)be a one-to-one mapping of D_{uvw} onto D_{xyz} , with f, g, h having continuous partials, and $\frac{d(x,y,z)}{d(u,v,w)} \neq 0$ on D_{uvw} If G(x, y, z) is continuous on D_{xyz} $\int \int \int_D G(x, y, z) dV = \int \int \int_{D_{uvw}} G(f(u, v, w), g(u, v, w), h(u, v, w)) |\frac{d(x,y,z)}{d(u,v,w)}| dV$