
Math 237 course note

Chenxuan Wei

May 2021

1



Contents

1 Graphs of Scalar Functions 4
1.1 Scalar Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Limits 5
2.1 Definition of a limit . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Limit Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Proving a Limit Does Not Exist . . . . . . . . . . . . . . . . . . . 7
2.4 Proving a Limit Exists . . . . . . . . . . . . . . . . . . . . . . . . 8
2.5 Appendix: Inequalities and Absolute Values . . . . . . . . . . . . 9

3 Continuous Functions 10
3.1 Definition of Continuous Functions . . . . . . . . . . . . . . . . . 10
3.2 The continuity Theorems . . . . . . . . . . . . . . . . . . . . . . 11

4 The Linear Approximation and Partial Derivatives 13
4.1 Partial Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2 Higher-Order Partial Derivatives . . . . . . . . . . . . . . . . . . 14
4.3 The tangent Plane . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.4 Linear Approximation for z = f(x, y) . . . . . . . . . . . . . . . . 16
4.5 Linear Approximation in Higher Dimensions . . . . . . . . . . . . 17

5 Differentiable Function 18
5.1 Definition of Differentiability . . . . . . . . . . . . . . . . . . . . 18
5.2 Differentiability and Continuity . . . . . . . . . . . . . . . . . . . 19
5.3 Continuous Partial Derivatives and Differentiability . . . . . . . . 20

6 Chain Rule 21
6.1 Basic Chain Rule in Two Dimensions . . . . . . . . . . . . . . . . 21
6.2 Extensions of the Basic Chain rule . . . . . . . . . . . . . . . . . 22
6.3 The Chain Rule for Second Partial Derivatives . . . . . . . . . . 23

7 Directional Derivatives and Gradient Vector 24
7.1 Directional Derivatives . . . . . . . . . . . . . . . . . . . . . . . . 24
7.2 The gradient Vector in Two Dimensions . . . . . . . . . . . . . . 25
7.3 Graident Vector in THree Dimensions . . . . . . . . . . . . . . . 26

8 Taylor Polynomials and Taylor’s Theorem 27
8.1 Taylor Polynomial of Degree 2 . . . . . . . . . . . . . . . . . . . 27
8.2 Taylor’s formula with Second Degree Remainder . . . . . . . . . 28
8.3 Grneralizations of the Taylor Polynomial . . . . . . . . . . . . . . 29

2



9 Critical Points 30
9.1 Local Extrema and Critical Points . . . . . . . . . . . . . . . . . 30
9.2 Second Derivative Test . . . . . . . . . . . . . . . . . . . . . . . . 31
9.3 Convex Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
9.4 Proof of the Second Partial Derivative Test . . . . . . . . . . . . 33

10 Optimization Problems 34
10.1 The extreme Value Theorem . . . . . . . . . . . . . . . . . . . . 34
10.2 Algorighm for Extreme Values . . . . . . . . . . . . . . . . . . . 35
10.3 Lagrage Multiplier Algorithm . . . . . . . . . . . . . . . . . . . . 36

11 Coordinate System 37
11.1 PolarC oordinates . . . . . . . . . . . . . . . . . . . . . . . . . . 37
11.2 Cylindrical Coordinates . . . . . . . . . . . . . . . . . . . . . . . 37

12 Mapping of R2 into R2 38
12.1 The Geometry of Mappings . . . . . . . . . . . . . . . . . . . . . 38

13 Jacobians and Inverse Mappings 39
13.1 The inverse Mapping Theorem . . . . . . . . . . . . . . . . . . . 39

14 Double Integrals 41
14.1 Definition of Double Intergrals . . . . . . . . . . . . . . . . . . . 41
14.2 Iterated Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
14.3 The Change of Varibale Theorem . . . . . . . . . . . . . . . . . . 43

15 Triple Integrals 44
15.1 Definition of Triple Integrals . . . . . . . . . . . . . . . . . . . . . 44
15.2 Iterated Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
15.3 The change of Variable Theorem . . . . . . . . . . . . . . . . . . 46

3



1 Graphs of Scalar Functions

1.1 Scalar Functions

1. Scalar function
A function f : R2 → R is the scalar function with

� Domain D(f) ⊆ R2

� Range: R(f) ⊆ R→ codomain

2. Notation:
We will use x for element in Rn

3. Level curves
Let f : R2 → R, k= f(x, y) where k is a constant in range of f

4. Cross-section
Let z = f(x, y), then:

� z = f(c, y)

� z = f(x, d)

for constant c and d

5. Level sets
= {x ∈ Rn|f(x = k} where k ∈ R(f)

4



2 Limits

2.1 Definition of a limit

1. Neighbourhood
An r-neighbourhood isof a point (a, b) ∈ R2 is a set of
Nr(a, b) = {(x, y) ∈ R2 : ||(x, y)− (a, b)|| < r} where r ∈ R

2. Remarks:

� ||(x, y)− (a, b)|| =
√

(x− a)2 + (y − b)2

� When r < 0, Nr(a, b) is a empty set, so we usually consider only
non-negative values of r.

3. Limit
Assume f(x, y) is defined in a neighbourhood of (a, b), except possibly at
(a, b).
If ∀ε > 0,∃δ > 0 such that
0<||(x, y)− (a, b)||<δ implies |f(x, y)− L| < ε
Then, lim(x,y)→(a,b) f(x, y) = L
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2.2 Limit Theorems

1. Property of limit
If lim(x,y)→(a,b) f(x, y) and lim(x,y)→(a,b) g(x, y) both exist, then:

� lim(x,y)→(a,b)[f(x, y)+g(x, y)] = lim(x,y)→(a,b) f(x, y)+lim(x,y)→(a,b) g(x, y)

� lim(x,y)→(a,b)[f(x, y)g(x, y)] = [lim(x,y)→(a,b) f(x, y)]+[lim(x,y)→(a,b) g(x, y)]

� lim(x,y)→(a,b)
f(x,y)
g(x,y) = fraclim(x,y)→(a,b) f(x, y)lim(x,y)→(a,b) g(x, y)

2. Uniqueness
If lim(x,y)→(a,b) f(x, y) exists, then it is unique.
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2.3 Proving a Limit Does Not Exist

1. Use Uniqueness to show that the limit is different at different y value

2. Let y = f(x) show that the limit is depend on some variable, still against
Uniqueness
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2.4 Proving a Limit Exists

1. Squeeze Theorem
If ∃B(x, y) such that:

� ∀(x, y) 6= (a, b), |f(x, y)− L| ≤ B(x, y)

� lim(x,y)→(a,b)B(x, y) = 0

Then, lim(x,y)→(a,b) f(x, y) = L

The following is a Algorithm for Determine whether lim(x,y)→(a,b) f(x, y)
exists:
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2.5 Appendix: Inequalities and Absolute Values

1. Property of Inequalities

� Trichotomy: ∀a, b ∈ R one and only one holds:

(a) a = b

(b) a < b

(c) b < a

� Transitivity: If a < b and b < c, then a < c

� Addition: If a < b, then ∀c ∈ R, a+ c < b+ c

� Multiplication: if a < b and c < 0, then bc < ac

� Inverse Multiplicative: If ab > 0 and a < b, then 1
b <

1
a

2. Property of Absolute value

� |a| =
√
a2

� |a| < b ⇐⇒ −b < a < b

� ∀a, b ∈ R, |a+ b| ≤ |a|+ |b|
� If c > 0, then a < a+ c

� 2|x||y| ≤ x2 + y2
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3 Continuous Functions

3.1 Definition of Continuous Functions

1. Continuous
A function f(x,y) is continuoues ⇐⇒
lim(x,y)→(a,b) f(x, y) = f(a, b)
Additionly, if ∀D ⊂ R2, f is coutinoues, we say f is continuous on D.

2. The following three requirements must meet:

� lim(x,y)→(a,b) f(x, y) exist

� f is defined at (a, b)

� lim(x,y)→(a,b) f(x, y) = f(a, b)
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3.2 The continuity Theorems

1. Basic Functions The following function continuous on their domains:

� The constant function: f(x, y) = k

� The power functions: f(x, y) = axm + byn

� The logarithm function: ln(· · ·)
� THe exponential function: e(···)

� The trignometic functions: sin(· · ·), cos(· · ·), . . .
� The inverse trig functions: sin−1(· · ·), . . .
� THe absolute value function | · · · |

2. Operation on Functions

� Sum f + g is defined by
(f + g)(x, y) = f(x, y) + g(x, y)

� Product fg is defined by
(fg)(x, y) = f(x, y)g(x, y)

� Quotient f
g is defined by

f
g (x, y) = f(x,y)

g(x,y) , given g(x, y) 6= 0

3. Composite Function
Let g : R→ R and F : Rn → R be 2 funciton
The function g ◦ f is defined by (g ◦ f)(x, y) = g(f(x, y)
Where g ◦ f : Rn → R and domain D(g ◦ f) = {(x, y) ∈ D(f) : f(x, y) ∈
D(g)}
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4. Continuity Theorem
Assume f and g are both continuous at (a, b), then:

� f + g and fg are continuous at (a, b)

�
f
g is continuous at (a, b)

� g ◦ f is continuous at (a, b)
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4 The Linear Approximation and Partial Deriva-
tives

4.1 Partial Derivatives

1. A scalar Function f(x, y) can be differentiated in two natural ways:

� Treat y as a constant, we obtain df
dx

� Treat x as a constant, we obtain df
dy

2. Partial Derivatives
The partial derivatives of f(x, y) are defined by

�
df
dx = fx(x, y) = limh→0

f(x+h,y)−f(x,y)
h

�
df
dy = fy(x, y) = limh→0

f(x,y+h)−f(x,y)
h

and these limits always exist

3. Operator notation

� D1f = df
dx = fx

� D2f = df
dy = fy
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4.2 Higher-Order Partial Derivatives

1. Second Partal Derivatives
There are four types of second derivatives

�
d2f
dx2 = d

dx ( df
dx ) = fxx = D2

1f

�
d2f
dydx = d

dy ( df
dx ) = fxy = D2D1f

�
d2f
dxdy = d

dx ( df
dy ) = fyx = D1D2f

�
d2f
dy2 = d

y ( df
dy ) = fyy = D2

2f

2. Clairaut’s Theorem
If Both fxy and fyx are defined in some neighborhood of (a, b) and both
continuous, then

fxy(a, b) = fyx(a, b)
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4.3 The tangent Plane

1. Tangent Plane
Let z = f(x, y), the tangent plane at point (a, b, f(a, b) is

z = f(a, b) +
df

dx
(a, b)× (x− a) +

df

dy
(a, b)× (y − b)
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4.4 Linear Approximation for z = f(x, y)

1. Review for 1D
Let y = f(x), then Linear approximation at point (a, f(a)) is:

La(x) = f(a) + f
′
(a)(x− a)

2. For 2D
Let z = f(x, y), the linearization of point (a, b) is

L(a,b)(x, y) = f(a, b) +
df

dx
(a, b)× (x− a) +

df

dy
(a, b)× (y − b)

3. Increment form of Linear Approximation
Let z = f(x, y) and suppose we know f(a, b) Let ∆x = x− a,∆y = y − b
and
∆f = f(x, y)− f(a, b) = df

dx (a, b)× (x− a) + df
dy (a, b)× (y − b)
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4.5 Linear Approximation in Higher Dimensions

1. Linear Approximation in R3

Let f(x, y, z) be a function, we define the linearization of g at ~v = (a, b, c)
by

L~v(x, y, z) = f(~v) + fx(~v)× (x− a) + fy(~v)× (y − b) + fz(~v)× (z − c)

2. Gradient
Suppose that f(x, y, z) have partial derivatives at ~a ∈ R3, then
The gradient of f at ~a is

∇f(~a) = (fx(~a), fy(~a), fz(~a))

3. Linearization and Approximation
Let f(~x), ~x ∈ R3 has partial derivatives at ~a ∈ R3, then

� The linearization of f at ~a is

L~a(~x) = f(~a) +∇f(~a)× (~x− ~a)

� The linear apprioximation of f at ~a is

f(~x) ≈ f(~a) +∇f(~a)× (~x− ~a)
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5 Differentiable Function

5.1 Definition of Differentiability

1. Differentiability for Functions in One Variable

� Error of linear approximation:

R1,a(x) = g(x)− La(x)

= g(x)− g(a)− g
′
(a)(x− a)

� Theorem 1
If g

′
(a) exists, then limx→a

|R1,a(x)|
|x−a| = 0

2. Differentiability for Functions in Two Variables

� Error of linear approximation

R1,(a,b)(x, y) = f(x, y)− L(a,b)(x, y)

� Differentiable
A function f(x, y) is differentiable at (a, b) if

lim
(x,y)→(a,b)

|R1,(a,b)(x, y)|
||(x, y)− (a, b)||

= 0

where
R1,(a,b)(x, y) = f(x, y)− L(a,b)(x, y)

� Theorem 2
If a function f(x, y) satisfies

lim
(x,y)→(a,b)

|f(x, y)− f(a, b)− c(x− a)− d(y − b)|
||(x, y)− (a, b)||

= 0

for some constants c and d then c = fx(a, b) and d = fy(a, b)

3. Tangent Plane
Let function f(x, y) be differentiable at (a, b), the tangent plane of z =
f(x, y) at (a, b, f(a, b)) is the graph of linearization which

z = f(a, b) +
df

dx
(a, b)(x− a) +

df

dy
(a, b)(y − b)
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5.2 Differentiability and Continuity

1. Theorem 1
if f(x, y) is differentiable at (a, b), then f is continuous at(a, b).

2. And that’s it. Why this is a seperate lecture????????

19



5.3 Continuous Partial Derivatives and Differentiability

1. The Mean Value Theorem
If f(x) is

� Continuoues on closed interval [x1, x2]

� Differentiable on the open interval (x1, x2)

Then, ∃x0 ∈ (x1, x2) such that

f(x2)− f(x1) = f
′
(x0)(x2 − x1)

2. Theorem 2
If partial derivatives df

dx and df
dx are both continuous at (a, b), then f(x, y)

is defferentiable at (a, b)

3. Differetiability for f : Rn → R
A function f : Rn → R is differentiable at a point ~a = (a1, . . . , an) if:

lim
~x→~a

|f(~x)− f(~a)− L~a(~x− ~a)|
||~x− ~a||

= 0

where L : Rn → R is a linear transformation

20



6 Chain Rule

6.1 Basic Chain Rule in Two Dimensions

1. Basic chain rule for R

T
′
(t) = f

′
(x(t))x

′
(t)

or
dT

dt
=
dT

dx
∗ dx
dt

2. Chain rule for f(x(t), y(t))
Let G(t) = f(x(t), y(t)) and Let a = x(t0) and b = y(t0)
If f is differentiable at (a, b) and x

′
(t0) and y

′
(t0)

Then G
′
(t0) exists and equals

G
′
(t0) = fx(a, b)x

′
(t0) + fy(a, b)y

′
(t0)

3. If g(s, t) = f(x, y) and x(s, t) = . . . and y(s, t) = . . .
then, gs(s, t) = fx(u(s, t), v(s, t))us(s, t) + fy(u(s, t), v(s, t))vs(s, t)

4. Vector From of basic chain rule
Let f(x, y), x(t) and y(t) all be differentiable, defineT (t) = f(x(t), y(t)),
then

dT

dt
= ∇f ∗ d~x

dt

and
d

dt
f(~x(t)) = ∇f(~x(t)) ∗ d~x

dt
(t)

wirh ~x(t) = (x1(t), x2(t))
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6.2 Extensions of the Basic Chain rule

1. Dependence Tree with one independent variable
Let u = f(x, y) with differentiable function x(t) and y(t) then

� Dependent variable: u

� Intermediate variables: x, y

� Independent variables: t

Such that the trree is like:
u

x

t

y

t

and the formula is
du

dt
=
du

dx

dx

dt
+
du

dy

dy

dt

2. Dependence Tree with more independent variable
Let u = f(x, y) with x = x(s, t) and y = y(s, t) have first order partial
derivatives at (s, t) and f is differentiable at (x, y) = (x(s, t)y, (s, t))

� Dependent variable: u

� Intermediate variables: x, y

� Independent variables: t, s

The tree is like
u

x

t s

y

t s

where
du

ds
=
du

dx

dx

ds
+
du

dy

dy

ds
=
du

dx

dx

dt
+
du

dy

dy

dt
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6.3 The Chain Rule for Second Partial Derivatives

3. Laplace’s equation
uxx + uyy = 0

4. Remark
Let z = f(x) and x = eu

� z
′
(u) = f

′
(eu)eu

� z
′′
(u) = x2f

′′
(x) + xf

′
(x)
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7 Directional Derivatives and Gradient Vector

7.1 Directional Derivatives

1. Directional Derivatives
The directional derivative of f(x, y) at poinrt (a, b) in the direction of a
unit vector ~u = (u1, u2) where ||~u|| = 1

D~uf(a, b) =
d

ds
f(a+ su1, b+ su2)|s=0

2. Directional Derivative Theorem
If f(x, y) is differentiable at (a, b) and ~u = (u1, u2) where ||~u|| = 1, then

D~uf(a, b) = ∇f(a, b)~u

where the middle part is a dot produce.
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7.2 The gradient Vector in Two Dimensions

1. The greatest rate of change theorem (GRC)
If f(x, y) is differentiable at (a, b) and ∇f(a, b) 6= (0, 0), then the largest
value of
D~uf(a, b) is ||∇f(a, b)|| and orrurs when ~u is in the direction of ∇f(a, b)

2. Orthogonality Theorem
If f(x, y) ∈ C1 in a neighborhood of (a, b) and ∇f(a, b) 6= (0, 0) then
∇f(a, b) is orthogonal to the level curve of f(x, y) = k through (a, b, k)
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7.3 Graident Vector in THree Dimensions

1. Orthgonality Theorem in Three Dimensions
If f(x, y, z) ∈ C1 in the neighborhood of (a, b, c) and ∇f(a, b, c) 6= (0, 0, 0),
then it is orthogonal to the level surface f(x, y, z) = k through (a, b, c)
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8 Taylor Polynomials and Taylor’s Theorem

8.1 Taylor Polynomial of Degree 2

1. Single Variable Case for Taylor
For degree 2 point a taylor polynomial

P2,a(x) = f(a) + f
′
(a)(x− a) +

1

2
f ‘′(a)(x− a)2 = La(x) +

1

2
f ‘′(a)(x− a)2

2. Two variable Case for Taylor Polynomial

P2,(a,b)(x, y) = f(a, b)+fx(a, b)(x−a)+fy(a, b)(y−b)+1

2
[fxx(a, b)(x−a)2+2fxy(a, b)(x−a)(y−b)

+fyy(a, b)(y − b)2]

3. Hessian Matrix

Hf(x, y) =

(
fxx(x, y) fxy(x, y)
fyx(x, y) fyy(x, y)

)
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8.2 Taylor’s formula with Second Degree Remainder

1. Taylor Remainder for single Variable Function
if f

′′
(x) exists on [a, x], then there exists a number c between a and x

such that
f(x) = f(a) + f

′
(a)(x− a) +R1,a(x)

where

R1,a(x) =
1

2
f

′′
(c)(x− a)2

2. Taylor’s Theorem for Function of Two Variables
If f(x, y) ∈ C2 in some neighborhood N(a, b) of (a, b), then for all (x, y) ∈
N(a, b) there exists a point (c, d) on the line segment joining (a, b) and
(x, y) such that

f(x, y) = f(a, b) + fx(a, b)(x− a) + fy(a, b)(y − b) +R1,(a,b)(x, y)

where

R1,(a,b)(x, y) =
1

2
[fxx(c, d)(x−a)2+2fxy(c, d)(x−a)(y−b)+fyy(c, d)(y−b)2]

3. Corollary
If f(x, y) ∈ C2 in some closed neighborhood N(a, b) of (a, b), then there
exists a positive constant M such that

|R1,(a,b)(x, y)| ≤M ||(x, y)− (a, b)||2,∀(x, y) ∈ N(a, b)
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8.3 Grneralizations of the Taylor Polynomial

1. Multi-Index Notation
If f ∈ Ck is a function of n variables, we can drite k th order partial
derivative of f(x1, . . . , xn) is

daf = (
d

dx1
)a1 × . . .× (

d

dxn
)f

where a is multi-index and a = (a1 . . . an), the order is k =
∑
ai = |a|

and a! = a1!× . . .× an!

2. k-th degree Taylor polynomial
is defined as

Pk,(a,b)(x, y) =
∑
|a|≤k

(daf)(a, b)
[(x, y)− (a, b)]a

a!

3. Theorem 1L Taylor’s Theorem of order k
If f(x, y) ∈ Ck+1 in some neighbourhood N(a, b), then ∀(x, y) ∈ N(a, b),∃
a point (c, d) on the line segment between(a, b) and (x, y) such that

f(x, y) = Pk,(a,b)(x, y) +Rk,(a,b)(x, y)

where

Rk,(a,b)(x, y) =
∑
|a|=k+1

daf(c, d)
[(x, y)− (a, b)]a

a!

4. Corollary
If f(x, y) ∈ Ck then

lim
(x,y)→(a,b)

|f(x, y)− Pk,(a,b)(x, y)|
||(x, y)− (a, b)||k

= 0
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9 Critical Points

9.1 Local Extrema and Critical Points

1. Local Max and Min
A point (a, b) is

� Local max if f(x, y) ≤ f(a, b)∀(x, y) in neightborhood of (a, b)

� Local min if f(x, y) ≥ f(a, b)∀(x, y) in neighborhood of a, b

2. Thoerem 1
If (a, b) is a local extrema, then fx(a, b) = fy(a, b) = (0orDNE)

3. Critical POint
A point(a, b) in the domain of f(x, y) is called a critical point of f if
fx(a, b) = 0 = fy(a, b) or
one of fx or fy DNE at (a, b)

4. Saddle Point
A critical point (a, b) of f(x, y) is called a saddle point of f if in every
neighborhood of (a, b) there exists points(x1, y1) and(x2, y2) such
f(x1, y1) > f(a, b) and f(x2, y2) < f(a, b)
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9.2 Second Derivative Test

1. Quadratic Froms
A function Q of the form Q(u, v) = a11u

2 + 2a12uv + a22v
2 where aii is

constants

2. Derterminant and Quadratic forms

� Positive definite if det(A) > 0 and a11 > 0

� Negative definite if det(A) > 0 and a11 < 0

� Indifinite if det(A) < 0

� Semidefinite if det(A) = 0

3. Hessian Matrix Hf(a, b) =

(
fxx(a, b) fxy(a, b)
fxy(a, b) fyy(a, b)

)
4. Determinant and Quadratic Forms
Q(u, v) = a11u

2 + 2a12uv + a22v
2

� Positive definite : if det(A) > 0, and a11 > 0

� Negative definite: det(A) > 0 and a11 < 0

� Indefinite: det(A) < 0

� Semidefinite: det(A) = 0

5. Second Partical Derivatives Test
Suppose that f(x, y) ∈ C2 in some neighborhood of (a, b) and that
fx(a, b) = 0 = fy(a, b)

� if Hf(a, b) is positive definite, then(a, b) is a local minimum

� if Hf(a, b) is negative definite, then (a, b) is a local maximum

� if Hf(a, b) is indifinite, then (a, b) is a saddle point

� if Hf(a, b) is semidefinite, then the test is inconclusive
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9.3 Convex Functions

1. Convex and stritly convex functions of one variable
A twice differentiable function f(x) is convex if f

′′
(x) ≥ 0 for all x and f

is strictly convec if f
′′
(x) > x for all x, which means concave up

2. Theorem1 :Properties of convex functions of one variable
If f(x) ∈ C2 and is strictly convec, then

� f(x) > La(x) = f(a) + f
′
(x)(x− a) for all x 6= a, for any a ∈ R

� For a < b, f(x) < f(a) + f(b)−f(a)
b−a (x− a) for x ∈ (a, b)

3. Convec and strictly convex functions of two variables
Let f(x, y) have continuous second partial derivatives. We say that f is
convex if Hf(x, y) is positive semi-definite for all (x, y) and
f is strictly convex if Hf(x, y) is positve definte for all (x, y).

4. Theorem 2: Properties of convex functions of two variables
If f(x, y) has continuous second partial derivatives and is strictly convex,
then

� f(x, y) > L(a,b)(x, y) for all (x, y) 6= (a, b) and

� f(a1 + t(b1− a1), a2 + t(b2− a2)) < f(a1, a2) + t[f(b1, b2)− f(a1, a2)]
for 0 ¡

5. Theorem 3: Critical Points of convex and strictly convex functions

� if f(x, y) ∈ C2 is convec, then every critical point(c, d) satisfies
f(x, y) ≥ f(c, d) for all (x, y) 6= (c, d)

� If f(x, y) ∈ C2 is strictly convec and has a critical point(c ,d) then
f(x, y) ≥ f(c, d) for all (x, y) 6= (c, d) and f has no other critical point

32



9.4 Proof of the Second Partial Derivative Test

1. Lemma 1
Let (

a b
c d

)
be a positive definite matrix, if |a′−a|, |b′−b|, |c′−c| are sufficiently small,
then (

a′ b′

c′ d′

)
is positive definite
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10 Optimization Problems

10.1 The extreme Value Theorem

1. Absolute Max and Min for one variable

� Absolute Max of f on I for a point x = c ∈ I if ∀x ∈ I, f(x) ≤ f(c)

� Absolute Min of f on I for a point x = c ∈ I if ∀x ∈ I, f(x) ≥ f(c)

2. The extreme Value theorem for one variable
If f(x) is continuous on finite closed intervial I, then ∃c1, c2 ∈ I such
f(c1) ≤ f(x) ≤ f(c2)∀x ∈ I

3. Absolute Max and Min for two variable

� Absolute Max of f on I for a point x = (a, b) ∈ I if ∀x ∈ I, f(x, y) ≤
f(a, b)

� Absolute Min of f on I for a point x = (a, b) ∈ I if ∀x ∈ I, f(x, y) ≥
f(a.b)

4. Bounded Set
A set S ∈ R2 is said to be bounded ⇐⇒ it contain some neighbourhood
of the origin

5. Boundary Point
Given a set S ⊆ R2, a point (a, b) ∈ S2 is said to be a boundary point
of S ⇐⇒ every neighbourhood contain at least one point in S and one
point not in S

6. Boundary of S
B(S) contain all Boundary Point of S

7. Closed Set
A set S ⊆ R2 is said to be closed if S contain all boundary points

8. Extreme valud theorem for two variables
If f(x, y) is continouous on a closed and bounded set S ⊆ S2, then there
exist points (a, b), (c, d) ∈ Ssuch
f(a, b) ≤ f(x, y) ≤ f(c, d)∀(x, y) ∈ S
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10.2 Algorighm for Extreme Values

1. Check if S ⊆ R2 is closed and bounded

2. check it f(x, y) is continouous

3. Next Finad all critical points of S

4. evaluate f at each point

5. Fined max and min value s of f aon B(S)

6. The max of f on S is the largetst value found in step 4 and 5 and min is
the same

35



10.3 Lagrage Multiplier Algorithm

Assume that f(x, y) is a differentiable function and g ∈ C1. To find the max
and min of f subject ot the constraint g(x, y) = k
Evaluate f(x, y) at all points(a, b) which satisfy one of the following

� ∇f(a, b) = λ∇g(a, b)

� ∇g(a, b) = (0, 0)

� (a, b) is an end point of g(x, y) = k
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11 Coordinate System

11.1 PolarC oordinates

1. Definitions

� Pole: the origin of a polar plane

� Polar axis: a ray drawed from the pole

� (r, θ) is a coordinate from the polar plane

2. Relationship with Cartesian Coordinates

� x = r ∗ cosθ
� y = r ∗ sinθ
� r =

√
x2 + y2

� θ = tan−1( y
x )

3. Area of sector

=
1

2
∗ r2 ∗ (θ2 − θ1)

11.2 Cylindrical Coordinates
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12 Mapping of R2 into R2

12.1 The Geometry of Mappings

1. Vector-valued Function
A function Whose domain is a subset of Rn and whose codomain is Rm

is called a vector -valued function

2. Mapping
A Rn− > Rn vector calued function is a mapping
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13 Jacobians and Inverse Mappings

13.1 The inverse Mapping Theorem

1. Invertible Mapping and Inverse Mapping
Let F be a mapping from set Dxy on set Duv. If there exists a mapping
of F−1, called the inverse of F, which maps Duv onto Dxy such that
(x, y) = F−1(u, v) ⇐⇒ (u, v) = F (x, y)
then F is invertible on Dxy

2. One-to-One(injective)
A mapping F from R2 → R2 is said to be one-to-one (or injective) on a
set Dxy ⇐⇒ F (a, b) = F (c, d) implies (a, b) = (c, d)∀(a, b), (c, d) ∈ Dxy

3. One-to-One implies Invertible
If F is one-to-one, then F is intervible

4. Theorem 2: Inverse of the derivative Matrix
Consider a mapping F which maps Dxy onto Duv

If F has continuous partial derivatives at ~x ∈ Dxy and there exists an
inverse mapping F−1 of F which has contiuous partial derivatives at
~u = F (~x) ∈ Duv, then
DF−1(~u)DF (~x) = I
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5. The jacobian
The Jacobian of a mapping (u, v) = F (x, y) = (u(x, y), v(x, y)) is denoted
d(u,v)
d(x,y) , and is defined by
d(u,v)
d(x,y) = du

dx ×
dv
dy −

du
dy ×

dv
dx

6. Corollary 3
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14 Double Integrals

14.1 Definition of Double Intergrals

1. Integrable function
Let D ⊆ R2 be closed and bounded. Let P be a partition of D, and |∆P |
be the length of the longest side of all rectangle in P.
A function f(x, y) which is bounded on D is integrable on D if all riemann
sum approach the same value as |∆P | → 0

2. Double Integral
Iff(x, y) is integrable on a closed bounded set D, then we define the double
integral of F on D as∫ ∫

D
f(x, y)dA = lim∆P→0

∑n
i=1 f(xi, yi)∆Ai

3. Theorem 1 Linearity
If D ⊆ R2 is a closed and bounded set and f and g are two integrable
functions on D, then for any constatn c:

�

∫ ∫
D

(f + g)dA =
∫ ∫

D
fdA+

∫ ∫
D
gdA

�

∫ ∫
D
cfdA = c

∫ ∫
D
fdA

4. Thoerem 2 Basic Inequality
if ∀(x, y) ∈ D, f(x, y) ≤ g(x, y)
then

∫ ∫
D
fdA ≤

∫ ∫
D
gdA

5. Theorem 3 Absolute Value Inequality
|
∫ ∫

D
fdA| ≤

∫ ∫
D
|f |dA

6. THeorem 4 Decomposition
Let D1 +D2 = D, then∫ ∫

D
fdA =

∫ ∫
D1
fdA+

∫ ∫
D2
fdA
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14.2 Iterated Integrals

1. Iterated Integrals
Let D ⊆ R2 be defined by yl(x) ≤ y ≤ yu(x), and xl ≤ x ≤ xu
where both y are continuous , if f(x, y) continuous on D, then∫ ∫

D
f(x, y)dA =

∫ xu

xl

∫ yu(x)

yl(x)
f(x, y)dydx
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14.3 The Change of Varibale Theorem

1. The Theorem
Let each of Duv and Dxy be closed bounded set
Let (x, y) = F (u, v) = (f(u, v), g(u, v))
be one to one mapping of Duv onto Dxy with f, g ∈ C1

and d(x,y)
d(u,v) 6= 0 expect for possibly on a finite collection of piecewise-smooth

curves in Duv

If G(x, y) is continouous on Dxy, then∫ ∫
Dxy

G(x, y)dxdy =
∫ ∫

Duv
G(f(u, v), g(u, v))| d(x,y)

d(u,v) |dudv
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15 Triple Integrals

15.1 Definition of Triple Integrals

1. Integrable
A function f(x, y, z) which is bounded on a closed bounded set D ⊂ R3

is said to be integrable on D ⇐⇒ all Riemann sums approach the same
value as ∆P → 0

2. Triple Integral
if f(x, y, z) is integrable on a closed bounded set D, then we define the
triple integral of f over D as∫ ∫ ∫

D
f(x, y, z)dV = lim∆P→0

∑n
i=1 f(xi, yi, zi)∆Vi

3. Average Value
Let D ⊂ R3 be closed and bounded with volume V (D) 6= 0, and let
f(x, y, z) be a bounded and integrable function on D
The average value of f over D is defined by
favg = 1

V (D)

∫ ∫ ∫
D
f(x, y, z)dV

4. Properties of Triple Integral

� Linearty
if D ⊂ R3 is a closed and boueded set, c is constant, and f and g are
two integrable functions on D, then∫ ∫ ∫

D
(f + g)dV =

∫ ∫ ∫
D
fdV +

∫ ∫ ∫
D
gdV∫ ∫ ∫

D
cfdV = c

∫ ∫ ∫
D
fdV

� Basic Inequality
If D ⊂ R3 is a closed and bounded set and f and g are two integrable
functions on D
such that f(x, y, z) ≤ g(x, y, z) for all (x, y, z) ∈ D, then∫ ∫ ∫

D
fdV ≤

∫ ∫ ∫
gdV

� Absolute Value Inequality
if D ⊂ R3 is a closed and bounded set and f is an integrable function
on D, then
|
∫ ∫ ∫

D
fdV | ≤

∫ ∫ ∫
D
|f |dV

� Decomposition
Assume D ⊂ R3 is a closed and bounded set and f is an integrable
function on D.
If D is decomposed in two D1 and D2, then∫ ∫ ∫

D
fdV =

∫ ∫ ∫
D1
fdV +

∫ ∫ ∫
D2
fdV
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15.2 Iterated Integrals

Let D ⊂ R3 defined by zl(x, y) ≤ x ≤ zu(x, y) and (x, y) ∈ Dxy

where zl and zu are continuous functinos on Dxy and Dxy is closed bounded
subset in R2

If f(x, y, z) is continuous, then∫ ∫ ∫
D
f(x, y, z)dV =

∫ ∫
Dxy

∫ zu(x,y)

zl(x,y)
f(x, y, z)dzdA
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15.3 The change of Variable Theorem

1. Change of Variable Theorem
Let x = f(u, v, w), y = g(u, v, w), z = h(u, v, w)
be a one-to-one mapping of Duvw onto Dxyz, with f, g, h having continu-
ous partials, and
d(x,y,z)
d(u,v,w) 6= 0 on Duvw

If G(x, y, z) is continuous on Dxyz∫ ∫ ∫
D
G(x, y, z)dV =

∫ ∫ ∫
Duvw

G(f(u, v, w), g(u, v, w), h(u, v, w))| d(x,y,z)
d(u,v,w) |dV
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