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1.1

Floating point

Source of Error

. Errors in input

e Measurement error

e rounding error
Error as a result of calculation

e Truncation error: taylor series

e Rounding error in elementary steps of algorithm
definition 1,1 Round error

e Absolute error = |z — Z| where T is an approximation of x

e Relative Error =

Truncation Error: Taylor series
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1.2 Floating Point numbers and Operation
1. Floating point representation

e Base: base of the number system by
e The mantissa: contains the normalized value of the number my
e exponent: which defines the offset from normalization, ey

F=0ux...2, x by Ye
whrer 1 <21 <b—-1,0<2; <b—-1

2. Compare to fixed point

¢ Fixed point
— Values are evenly spaced
— Really small or large value can’t be represented
— To represent real number, choose the cloest computer value

e Floating

— not evenly spaced, smaller value are closer
— Greater range value can be represente
— Required to rounding

3. how to represent number in a certainsystem Assume z = 0.z ...z,, F[b,
m, e

(a) Normallizaed x to make it like 0.2 ... 2, where 1 # 0
(b) then £ = r X ba:thenumberyoumo’ueyourdicimalpoint

(c) and T = 0.7 ... x,, x brwithedigit

the x we get called fi(x)
4. New terms

e chopping: remove all digits > m

e rounding: round the digites

5. Single precision numbers
Fb=2m=23e=7]
Smb1 ... bpseer . ..em
where s; are sign bits
n=23m=7

6. Double Precision Numbers
Fb =2 m =52, e =10



7. Machine epsilon

e Definition
€mach 1S the smallest number e > 0 such fI(1+e€) > 1

e Proposition
€mach = b~ if chopping is used
€Emach = %bl_m if rounding is used

e Theorem
For any floating point system, under chopping
|6f6| = |%l(w)| S €mach

hence for

single precision |5, < 0.24 x 107% — 6 or 7 digits accuracy

double precision |, < 0.24 x 10715 — 15 to 16 digits of accuracy
8. Floating Point Operations

e Addition
a®b= fl(fl(a)+ f1(b))
e Proposition
a®b=(fl(a)+ fl(b))(1 4+ n)
where |n| < €mach
also = (a(1 +mn1) +b(1 +n2))(1 +n)
and this operation is not associative



1.3 Condition of a Mathematical Problem

1. well-conditioned
We say a problem P is wellOconditioned with respected to the absolute
error
if small changes 6% in Z result in small changes 6z in 7
we say P is ill-conditioned if result in large changes of z

2. condition number

° absolu‘t‘e
_lé
FA =5

)

8y

e relative
SIS

7
KR = Tlsz1]

[IEL

If they are between 0.1 and 10, we consider them to be small — well-
conditioned

3. Vector Norms

e Definition 1.7
Let V be vector space, then || || si a vector norm on V <=
— |17 =0 <= =0
— ||AT]| = |A| x ||U]|V0 € V,VA € R
= [la+ ]| < [lal| + ||v]|vd, 7 € V
Definition 1.8: 2-norm
IZ]l2 = /225 @7
e Definition 1.9: co-norm
1Z]loc = maz1<icn (i)

Definition 1.10: 1-norm

12l = 325 fil

Theorem 1.2: Cauchy-Schwartz Inequality
| g < |21 |31



2.1

Root founding

Intro

. Definition 2.1: double root

we say x is double root of f(x) <= f(x)=0and f'(z) =0

Theorem 2.1 Intermidiate value theorem (IVT)
if f(x) is countiuous on [a, b] and ¢ € [f(a), f(b)] then
dxx € [a,b] such f(zx) =¢



2.2 4 algorithms
1. Bisection Method

e Theorem 2.2
If f(x) is couninuous function on the interval [ag, bo] such that f(ag) *

f(bo) <0
then interval [ag, b is defined as

-
* ap—11f f((ag—1 +br—1)/2) * fax-1) < 0
% (ag—1 + br—1)/2 otherwise
— by =
* ap—11f f((ap—1 4+ br—1)/2) * flar—1) >0
% (ak—1 + br—1)/2 otherwise
e Algorithm:
Input: f(z), [a, b, ¢
while [b—a| > ¢
c=(a+b)/2
if /(@) * f(0) <0
b=c
else a = ¢
return (a + b) / 2

e Step to take n

_~ 1
n == o5 *log(

b—
| tal)

2. Fixed Point Interation

e Definition

We say xx* is a fixed point of g(x) if g(z) = z=
e Algorithm

Input: g(x), zg, t

leti=0

repeat

i=1i+1, x[i] = g(x[i-1])

until |z[i] —z[i — 1]| < ¢

return x[i]



3. Newton’s method

e algorightm
input f(x), f'(x), o, t
i=0,x[0] =z
repeat
P= it if f(ali - 1)) # 0, x[i] = x[i-1] - FE=R
until |z[i] — z[i — 1]| < t
return x[i|



2.3 Rate of converge

1. error
for sequence x;, the error at iterations i is
€ =T; — X

2. converges

sequence x; converges to x with order q <= x; converges to x, lim; ,~, ¢; =
N, and |e;41| = ¢;|ei|?
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2.4

1.

Convergence Theory

contraction

let g be a function, defined and continuous on bounded closed interval [a,
b], g is contraction if

3L € (0,1) such that |g(z) — g(y)| < L|z — y|,Vz,y € [a, b]

Thoerem 2.3: contaction Mapping Thoerem
if g is a contraction
e g has a unique fixed point x in [a, b]
e define g(zx) = xp41, converges to x as k — oo for any starting value
Corollary 2.1
Assume ¢(z) € [a,b], x € [a,b] = g(z) be a fixed point, ¢'(z) continuous
onis =[x — 4§,z + )
Define sequence x; by x;+1 = g(z;)
then
e if g(x) < 1, then Je such that x; converge to x for |xg — x| < e

e if g(z) > 1, then z; diverges for any start value xg

4. Theorem

11



3 Numerical Linear Algebra

3.1 Introduction

1. Theorem 3.1
Existence and Uniqueness consider of Az = b
o det(A) #0 <= x = A~'bis unique solution of Ax = b
o det(A) = 0 range(A) = column space of A

— if b € range(A), then there are infinitely many solution
— if b & range(A), then there are no solution

12



3.2

1.

10.

11.

Gaussian Elimination
Definition 3.1
e upper-trianglar
if Qjj = 0,Vi>j
e lower-triangular
if Q5 = 0vi < ]

. Inversion Property

L; can be obtained from M; by swapping the signs of the off-diagonal
elements

Combination Property
L= H;fll Li

. Definition 3.2

L is cllaed a lower triangular matrix with unit diagonal <= L is defined
like above with 1 on the diagonal

LU decomposition

e get A; and M;, U by gassiun elimination

e converge to L; by inversion property

get L by combination property
check A = LU

Solve Ly = b

e Solve Ux =y

Definition 3.3
permutation matatrix is obtained from I,, by change some rows

Theorem 3.2
there is always a P to make PA = LU

corollary 3.1
if A is non singular, then Ax = b can be solve by apply PA = LU

Determinants o
det(A) = 377, (=1)"*a;;det(Aj;)
Propositions
e det(BC) = det(B) * det(C)
e U € R™" upper t or lower t — det(U) = [ wi;
e P =-1if even row change, 1 if odd row changes
Proposition 3.2

13



Condition and stability

1. Definition 3.5

_ || Az||
1Allp = maw|z)20 7,2

. Proposition 3.3

[Az ][, < [[Allp]]=]l
proposition 3.4

o [[All1 =mazi<j<n 20 laij]

o [|Alloo = mazi<i<n 37— |aij

1
o ||Al|l2 = mazi<i<nA?, where \; is eigenvalue of AT A

. Propostion 3.5

1A+ Bllp < |[Allp + [|Bl],
Proposition 3.6

o |lAll, = 0,][All, =0 = A=0
o |ladll, = [all|All,
o [[A+Bll, < [|All, + |IBllp

Definition 3.6
Condition number of a matrix A is k(A4) = ||A]|||A7}|

14



Interative Methods for solving Ax = b

1. Sparse matrix

A is that <= number of no zero elements in A is much smaller than n

strictly diagonally dominant
Ais that <= |au| > D20 4 lail

Proposition 3.8
the above one is always non-singular

. Jacobi

xe = %(bz - Z;'L:l,j;éi aingld)
eV = ABl (b— (Ap + Ag)z°d)

Gauss-Seidel
new _ 1 L =1 _old _ n .. eold
Ty = aj(b% Zj:l Q5T Zj:i+1 Qi X j )

pnew — ABI (b _ (Aanew + AR.%‘Old))

15
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4 Interpolation

4.1 Polynomial Interpolation

1. Interpolation polynomial y,, ()
Given n + 1 discrete data points (z;, fi), ¢ € [0,n] with z; # z;,7 # j
the polynomial is the degree n polynomial:
yn(z) =30 aia’
such y, (z;) = fi
2. Determinant
2x2 = ad-bc

3. Vandermonde Matrix

e Definition V
a (n+1) x (n+1) row looks like
1,2;,22,..., 28, where i € [0,n]
e determinant
det(V) = HOSiSjgn(xj — ;)

4. Theorem 5.1
yn () exists and is unique

ot

. Largrange Form

e n+1 Largrange polynomials for set of point (x;, f;)
that is [;(x;) satisified
—ifi=j,1
— 0, otherwise
which 1;(z) = ] e

J=0,5#1 wi—a;
with yn(x) = Zi:o lz(z)fz
e The lagrange Basis
P, (z) = {yn(z)|yn(x) is a polynomial of degree < n}

6. Hermite Interpolation

e Definition y(x)
given {(x;, fi, f/)} the hermite interpolating polynomial is the poly-
nomial y(z) of degree 2n+1 which satisified
y(@i) = fi, ¥'(zi) = f;

16



4.2 Piecewise polynomial Interpolation

1. Spline Interpolation
there are 4 condition, y(z) is a degree k spline <=

e y(x) is a piecewise polynomial of degree k in each intercal I;
define y;(x) as the restricion of y(x) to [z;—1, ;]

e Interpolation condition
Yi(zi-1) = fi—1, yi(z:i) = fi

e smoothness condition
y](.k) (x;) = y](i)l(mj) for k-1 times, from first derivitive to k-1 derivi-
tive

e extra boundary condition

2. Extra for cubic spine

e "free boundary”

yY (xg) = 0,y (x,) = 0, this is a natural cubic spline
e ”clamped boundary”

y1(zo) = fo, yn(an) = fy
e "periodic boundary”

if fo=fn

y1(zo) = yp(zn), yi (z0) = Yy (zn)

17



5.1

Integration

Intergration of Interpolation polynomial

. midpoint rule (y(x) degree 0)

Io= [0 f(“£)da = (b—a) f(4£2)

. Trapezoid rule (y(x) degree 1)

I = (b—a)5[f(a) + ()]

Simpson Rule: (y(x) degree 2)
I =22(fo+4f1 + f2)

Error formula
e midpoint e = =2 £7(¢y), dp = 1
e trapezoid e = —%f”(&% dp=1

e Simpson e = —7(1;;;35 f®(&), dp =3

18



5.2

1.

Composite Integration

Composite Trapezoid rule
 _ pf@ic)+f (=)
I,=nh 5
I=41fo+ 310 2i + fl
T‘loc,i = Zi:l IZ = _Tlg(xz - :L'ifl)?)f//(gi)

. Composite Simpson rule

Li=g(fimr +4f_1 + f)
I'= 21;1 I;

theroem 6.2
global truncation error for the simpson rule is O(h?)

19



5.3 Gaussian Integration

1. Gaussian Integration
= B[ (552 (= J5) + (B59) + F((552)(Z5) + (5)]

20



6 Discrete Fourier Methods

6.1 Introduction

1. Complex number

vV—1l=i,z=a+bi
2. Terms

e Complex conjugate

Z=a—1b
e Real part
Re(z) =a
e Imaginary part
Im(z)=0b
e Modulus
r=|z| = va®+ b?

e Phase angle
0= arctcm(g)
3. Another from(Euler formulas)
z=rxe? =rx(cos(d) +ixsin(h))

21



6.2 Fourier series

1. Fourise Serieb
g(fE) 2+ Zk 1lagcos(k * 27r$) + bisin(k * %)]
f f(@) * cos(k * ZZ£)dx
f f() * sin(k * 2Z%)dx
2. Proposition 4.1
e f(t) even, by =0
L] f(t) Odd7 ap = O
3. Theorem 4.1 Fundamental Convergence Theorem for Fourier Series

V={f(z f f(z)dxr < 0o}
then all f( yevV there exists ag, ax, by such that

g(x) converge to f(x) for n — oo in the sense that ff(f(ac) —g(z))=0

4. Complex Fourier Serise
h(t) = e . cke'™t
ch= | fe

5. Relationship
C = %(ak — ibk>

6. Proposition 4.2
® Cp=Cg
¢ a_j =ag,b_p=by
e a = 2Re(ck, by, = —2Im(cx)

e by =0,c0 = %ao

7. Theorem 4.2 h(t) = g(t)

22



6.3 Fourier Series and Orthogonal Basis
1. Basic definition

e scalar produxt
THy=x1y1 +T2y2 =< T,5 >

2. Orthogonal Basis
Let B = {é;} be the Orthogonal Basis <=
< 6_;, 6_]" >= Cjj
where ¢;; is nonzero <= i=j

23



Discrete Fourier Transform

1. Nth root of unity

k 2kmi
Wy =€~

with property (W) =1
W = ik

Direct trnasf](\)frr{l
Flk] = & Ynso fIIWR™

Inverse discrete Fourier transform

flnl = S0y Flewhe

. Fast transformation

if N =2™, then
gln]

* h[n] =

o F[21] = 3DFT{g[n]}

e F[2+1] = $DFT{h[n]}

flnl+ fln+ N/2]
fln]

n) + fln+ N/2|

Have O(N % loga(N)) runtime

24
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