CS371 course note

Chenxuan Wei Jan 2022

Contents

1	Floating point 3		
	1.1	Source of Error	3
	1.2	Floating Point numbers and Operation	4
	1.3	Condition of a Mathematical Problem	6
2	Root founding 7		
	2.1	Intro	7
	2.2	4 algorithms	8
	2.3	Rate of converge	10
	2.4	Convergence Theory	11
3	Numerical Linear Algebra		
	3.1	Introduction	12
	3.2	Gaussian Elimination	13
	3.3	Condition and stability	14
	3.4	Interative Methods for solving $Ax = b \dots \dots \dots$.	15
4	Interpolation 16		
	4.1	Polynomial Interpolation	16
	4.2	Piecewise polynomial Interpolation	17
5	Integration 18		
	5.1	Intergration of Interpolation polynomial	18
	5.2	Composite Integration	19
	5.3	Gaussian Integration	20
6	Discrete Fourier Methods 2		
	6.1	Introduction	21
	6.2	Fourier series	22
	6.3	Fourier Series and Orthogonal Basis	23
	6.4	Discrete Fourier Transform	24

1 Floating point

1.1 Source of Error

- 1. Errors in input
 - Measurement error
 - rounding error
- 2. Error as a result of calculation
 - Truncation error: taylor series
 - Rounding error in elementary steps of algorithm
- 3. definition 1,1 Round error
 - Absolute error = $|x \overline{x}|$ where \overline{x} is an approximation of x
 - Relative Error = $\frac{|x-\overline{x}|}{|x|}$

4. Truncation Error: Taylor series
$$R_n(x) = \frac{f^{(n+1)}(E_n(x))}{(n+1)!}(x-a)^{n+1}$$

1.2 Floating Point numbers and Operation

- 1. Floating point representation
 - Base: base of the number system b_f
 - ullet The mantissa: contains the normalized value of the number m_f
 - \bullet exponent: which defines the offset from normalization, e_f

$$F = 0.x_1...x_m \times b^{y_1...y_e}$$

where $1 \le x_1 \le b - 1, 0 \le x_i \le b - 1$

- 2. Compare to fixed point
 - Fixed point
 - Values are evenly spaced
 - Really small or large value can't be represented
 - To represent real number, choose the cloest computer value
 - Floating
 - not evenly spaced, smaller value are closer
 - Greater range value can be represente
 - Required to rounding
- 3. how to represent number in a certain system Assume $x=0.x_1\dots x_n,$ F[b, m, e]
 - (a) Normallizaed x to make it like $0.x_1...x_n$ where $x_1 \neq 0$
 - (b) then $x = x \times b^{a=thenumberyoumoveyour dicimal point}$
 - (c) and $\overline{x} = 0.x_1 \dots x_m \times b^{a_b with edigit}$

the x we get called fl(x)

- 4. New terms
 - chopping: remove all digits > m
 - rounding: round the digites
- 5. Single precision numbers

$$F[b = 2, m = 23, e = 7]$$

 $s_m b_1 \dots b_n s_e e_1 \dots e_m$
where s_i are sign bits
 $n = 23, m = 7$

6. Double Precision Numbers F[b = 2, m = 52, e = 10]

7. Machine epsilon

• Definition

 ϵ_{mach} is the smallest number e>0 such fl(1+e)>1

• Proposition

$$\epsilon_{mach} = b^{1-m}$$
 if chopping is used $\epsilon_{mach} = \frac{1}{2}b^{1-m}$ if rounding is used

• Theorem

For any floating point system, under chopping

For any floating point sy
$$|\delta_x| = \left|\frac{x - fl(x)}{x}\right| \le \epsilon_{mach}$$
 hence for

single precision $|\delta_x| \le 0.24 \times 10^{-6} \to 6$ or 7 digits accuracy double precision $|\delta_x| \leq 0.24 \times 10^{-15} \rightarrow 15$ to 16 digits of accuracy

8. Floating Point Operations

• Addition

$$a \oplus b = fl(fl(a) + fl(b))$$

• Proposition

$$a \oplus b = (fl(a) + fl(b))(1+n)$$

where $|n| \leq \epsilon_{mach}$

also =
$$(a(1 + n_1) + b(1 + n_2))(1 + n)$$

and this operation is not associative

Condition of a Mathematical Problem 1.3

1. well-conditioned

We say a problem P is well0conditioned with respected to the absolute error

if small changes $\delta \vec{x}$ in \vec{x} result in small changes $\delta \vec{z}$ in \vec{z} we say P is ill-conditioned if result in large changes of z

- 2. condition number

 - absolute $\kappa_A = \frac{||\delta \vec{z}||}{||\delta \vec{x}||}$

• relative
$$\kappa_R = \frac{\frac{||\delta \vec{z}||}{||\vec{v}||}}{\frac{||\delta \vec{x}||}{||\vec{x}||}}$$

If they are between 0.1 and 10, we consider them to be small \rightarrow wellconditioned

- 3. Vector Norms
 - Definition 1.7

Let V be vector space, then || * || si a vector norm on V \iff

$$- ||\vec{v}|| = 0 \iff \vec{v} = \vec{0}$$

$$-\ ||\lambda \vec{v}|| = |\lambda| * ||\vec{v}|| \forall \vec{v} \in V, \forall \lambda \in R$$

$$-||\vec{u} + \vec{v}|| \le ||\vec{u}|| + ||\vec{v}|| \forall \vec{u}, \vec{v} \in V$$

• Definition 1.8: 2-norm $||\vec{x}||_2 = \sqrt{\sum_{i=1}^n x_i^2}$

$$||\vec{x}||_2 = \sqrt{\sum_{i=1}^n x_i^2}$$

• Definition 1.9: ∞-norm

$$||\vec{x}||_{\infty} = \max_{1 \le i \le n}(x_i)$$

• Definition 1.10: 1-norm $||\vec{x}||_1 = \sum_{i=1}^n |x_i|$

$$||x||_1 = \sum_{i=1}^{m} |x_i|$$

• Theorem 1.2: Cauchy-Schwartz Inequality $|\vec{x} * \vec{y}| \le ||\vec{x}||||\vec{y}||$

2 Root founding

2.1 Intro

- 1. Definition 2.1: double root we say x is double root of $f(x) \iff f(x) = 0$ and f'(x) = 0
- 2. Theorem 2.1 Intermidiate value theorem (IVT) if f(x) is countiuous on [a,b] and $c \in [f(a),f(b)]$ then $\exists x*\in [a,b]$ such f(x*)=c

2.2 4 algorithms

- 1. Bisection Method
 - Theorem 2.2 If f(x) is couninuous function on the interval $[a_0, b_0]$ such that $f(a_0) * f(b_0) \le 0$ then interval $[a_k, b_k]$ is defined as

$$-a_k = \\ * a_{k-1}iff((a_{k-1} + b_{k-1})/2) * f(a_{k-1}) \le 0 \\ * (a_{k-1} + b_{k-1})/2 \text{ otherwise} \\ -b_k = \\ * a_{k-1}iff((a_{k-1} + b_{k-1})/2) * f(a_{k-1}) > 0 \\ * (a_{k-1} + b_{k-1})/2 \text{ otherwise}$$

• Algorithm:

Input:
$$f(x)$$
, $[a, b]$, t while $|b - a| > t$
 $c = (a + b) / 2$
if $f(a) * f(c) \le 0$
 $b = c$
else $a = c$
return $(a + b) / 2$

- Step to take n $n = \geq \frac{1}{\log 2} * \log(\frac{|b-a|}{t})$
- 2. Fixed Point Interation
 - Definition We say x* is a fixed point of g(x) if g(x*) = x*
 - Algorithm Input: g(x), x_0 , tlet i = 0repeat i = i+1, x[i] = g(x[i-1])until |x[i] - x[i-1]| < treturn x[i]

3. Newton's method

```
• algorightm input f(x), f'(x), x_0, t i = 0, x[0] = x_0 repeat i = i+1, if f'(x[i-1]) \neq 0, x[i] = x[i-1] - \frac{f(x[i-1])}{f'(x[i-1])} until |x[i] - x[i-1]| < t return x[i]
```

2.3 Rate of converge

1 error

for sequence x_i , the error at iterations i is $e_i = x_i - x$

2. converges

sequence x_i converges to x with order $q \iff x_i$ converges to x, $\lim_{i\to\infty} c_i = N$, and $|e_{i+1}| = c_i |e_i|^q$

2.4 Convergence Theory

1. contraction

let g be a function, defined and continuous on bounded closed interval [a, b], g is contraction if

$$\exists L \in (0,1)$$
 such that $|g(x) - g(y)| \le L|x - y|, \forall x, y \in [a,b]$

- 2. Thoerem 2.3: contaction Mapping Thoerem if g is a contraction
 - g has a unique fixed point x in [a, b]
 - define $g(x_k) = x_{k+1}$, converges to x as $k \to \infty$ for any starting value
- 3. Corollary 2.1

Assume $g(x) \in [a,b], x \in [a,b] = g(x)$ be a fixed point, g'(x) continuous on $i_{\delta} = [x - \delta, x + \delta]$

Define sequence x_i by $x_{i+1} = g(x_i)$

then

- if g(x) < 1, then $\exists e$ such that x_i converge to x for $|x_0 x| < e$
- if g(x) > 1, then x_i diverges for any start value x_0
- 4. Theorem

3 Numerical Linear Algebra

3.1 Introduction

1. Theorem 3.1

Existence and Uniqueness consider of Ax = b

- $det(A) \neq 0 \iff x = A^{-1}b$ is unique solution of Ax = b
- det(A) = 0 range(A) = column space of A
 - if $b \in range(A)$, then there are infinitely many solution
 - if $b \not\in range(A)$, then there are no solution

3.2 Gaussian Elimination

- 1. Definition 3.1
 - upper-trianglar if $a_{ij} = 0, \forall i > j$
 - lower-triangular if $a_{ij} = 0 \forall i < j$
- 2. Inversion Property

 L_i can be obtained from M_i by swapping the signs of the off-diagonal elements

3. Combination Property $L = \prod_{i=1}^{n=1} L_i$

4. Definition 3.2

L is cliaed a lower triangular matrix with unit diagonal \iff L is defined like above with 1 on the diagonal

- 5. LU decomposition
 - get A_i and M_i , U by gassiun elimination
 - converge to L_i by inversion property
 - get L by combination property
 - check A = LU
 - Solve Ly = b
 - Solve Ux = y
- 6. Definition 3.3

permutation matatrix is obtained from I_n by change some rows

7. Theorem 3.2 there is always a P to make PA = LU

8. corollary 3.1

if A is non singular, then Ax = b can be solve by apply PA = LU

9. Determinants $\sum_{n=1}^{n}$

$$det(A) = \sum_{j=1}^{n} (-1)^{i+j} a_{ij} det(A_{ij})$$

- 10. Propositions
 - det(BC) = det(B) * det(C)
 - $U \in \mathbb{R}^{n \times n}$ upper t or lower $t \to \det(U) = \prod_{i=1}^n u_{ii}$
 - P = -1 if even row change, 1 if odd row changes
- 11. Proposition 3.2

$$det(A) \neq 0 \iff PA = LU, u_{ii} \neq 0 \forall i \in [1, n]$$

3.3 Condition and stability

- 1. Definition 3.5 $||A||_p = \max_{||x|| \neq 0} \frac{||Ax||_p}{||x||_p}$
- 2. Proposition 3.3 $||Ax||_p \le ||A||_p ||x||_p$
- 3. proposition 3.4
 - $||A||_1 = \max_{1 \le j \le n} \sum_{i=1}^n |a_{ij}|$
 - $||A||_{\infty} = \max_{1 \le i \le n} \sum_{j=1}^{n} |a_{ij}|$
 - $||A||_2 = \max_{1 \leq i \leq n} \lambda_i^{\frac{1}{2}}$, where λ_i is eigenvalue of $A^T A$
- 4. Propostion 3.5 $||A + B||_p \le ||A||_p + ||B||_p$
- 5. Proposition 3.6
 - $||A||_p \ge 0, ||A||_p = 0 \iff A = 0$
 - $||aA||_p = |a|||A||_p$
 - $||A + B||_p \le ||A||_p + ||B||_p$
- 6. Definition 3.6 Condition number of a matrix A is $\kappa(A) = ||A|| ||A^{-1}||$

Interative Methods for solving Ax = b3.4

1. Sparse matrix

A is that \iff number of no zero elements in A is much smaller than n^2

2. strictly diagonally dominant A is that
$$\iff |a_{ii}| > \sum_{j=1, j \neq i}^{n} |a_{ij}|$$

3. Proposition 3.8

the above one is always non-singular

4. Jacobi
$$x_i^{new} = \frac{1}{a_{ii}} (b_i - \sum_{j=1, j \neq i}^n a_{ij} x_j^{old})$$

$$x^{new} = A_D^{-1} (b - (A_L + A_R) x^{old})$$

5. Gauss-Seidel
$$x_i^{new} = \frac{1}{a_{ii}} (b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{old} - \sum_{j=i+1}^{n} a_{ij} x_j^{old})$$

$$x^{new} = A_D^{-1} (b - (A_L x^{new} + A_R x^{old}))$$

4 Interpolation

4.1 Polynomial Interpolation

- 1. Interpolation polynomial $y_n(x)$ Given n+1 discrete data points $(x_i,f_i),\ i\in[0,n]$ with $x_i\neq x_j, i\neq j$ the polynomial is the degree n polynomial: $y_n(x)=\sum_{i=1}^n a_i x^i$ such $y_n(x_i)=f_i$
- 2. Determinant 2x2 = ad-bc
- 3. Vandermonde Matrix
 - Definition V a (n+1) x (n+1) row looks like $1, x_i, x_i^2, \dots, x_0^n$, where $i \in [0, n]$
 - determinant $det(V) = \prod_{0 \le i \le j \le n} (x_j x_i)$
- 4. Theorem 5.1 $y_n(x)$ exists and is unique
- 5. Largrange Form
 - n+1 Largrange polynomials for set of point (x_i, f_i) that is $l_i(x_j)$ satisified
 - $\text{ if } i = j, \, 1$
 - 0, otherwise

which
$$l_i(x) = \prod_{j=0, j\neq i}^n \frac{x-x_j}{x_i-x_j}$$

with $y_n(x) = \sum_{i=0}^n l_i(x) f_i$

- The lagrange Basis $P_n(x) = \{y_n(x)|y_n(x) \text{ is a polynomial of degree } \leq n\}$
- 6. Hermite Interpolation
 - Definition y(x) given $\{(x_i, f_i, f'_i)\}$ the hermite interpolating polynomial is the polynomial y(x) of degree 2n+1 which satisified $y(x_i) = f_i, \ y'(x_i) = f'_i$

Piecewise polynomial Interpolation 4.2

1. Spline Interpolation

there are 4 condition, y(x) is a degree k spline \iff

- y(x) is a piecewise polynomial of degree k in each intercal I_i define $y_i(x)$ as the restricion of y(x) to $[x_{i-1}, x_i]$
- Interpolation condition

$$y_i(x_{i-1}) = f_{i-1}, y_i(x_i) = f_i$$

- smoothness condition $y_j^{(k)}(x_j)=y_{j+1}^{(k)}(x_j)$ for k-1 times, from first derivitive to k-1 derivitive
- extra boundary condition
- 2. Extra for cubic spine
 - "free boundary" $y_1''(x_0) = 0, y_n''(x_n) = 0$, this is a natural cubic spline
 - "clamped boundary" $y_1'(x_0) = f_0', y_n'(x_n) = f_n'$
 - "periodic boundary"

if
$$f_0 = f_n$$

$$y'(x_0) = y'(x_0) y''(x_0) = y''$$

$$y_1'(x_0) = y_n'(x_n), y_1''(x_0) = y_n''(x_n)$$

5 Integration

5.1 Intergration of Interpolation polynomial

- 1. midpoint rule (y(x) degree 0) $I_0 = \int_a^b f(\frac{a+b}{2}) dx = (b-a) f(\frac{a+b}{2})$
- 2. Trapezoid rule (y(x) degree 1) $I_1 = (b-a) \frac{1}{2} [f(a) + f(b)]$
- 3. Simpson Rule: (y(x) degree 2) $I_2 = \frac{b-a}{6}(f_0 + 4f_1 + f_2)$
- 4. Error formula
 - midpoint $e = \frac{(b-a)^3}{24} f''(\xi_0), dp = 1$
 - trapezoid e = $-\frac{(b-a)^3}{12}f''(\xi_1)$, dp = 1
 - Simpson $e = -\frac{(b-a)^5}{2880} f^{(4)}(\xi_2), dp = 3$

Composite Integration 5.2

1. Composite Trapezoid rule

Composite Trapezoid Tale
$$I_{i} = h \frac{f(x_{i-1}) + f(x_{i})}{2}$$

$$I = \frac{h}{2} [f_{0} + \sum_{i=1}^{n-1} 2f_{i} + f_{n}]$$

$$T_{loc,i} = \sum_{i=1}^{n} I_{i} = -\frac{1}{12} (x_{i} - x_{i-1})^{3} f''(\xi_{i})$$

2. Composite Simpson rule
$$I_i = \frac{h}{6}(f_{i-1} + 4f_{i-\frac{1}{2}} + f_i)$$

$$I = \sum_{i=1}^{n} I_i$$

3. theroem 6.2

global truncation error for the simps on rule is ${\cal O}(h^4)$

5.3 Gaussian Integration

1. Gaussian Integration $= \frac{b-a}{2} [f((\frac{b-a}{2})(-\frac{1}{\sqrt{3}}) + (\frac{b+a}{2})) + f((\frac{b-a}{2})(\frac{1}{\sqrt{3}}) + (\frac{b+a}{2}))]$

6 Discrete Fourier Methods

6.1 Introduction

- 1. Complex number $\sqrt{-1} = i, z = a + bi$
- 2. Terms
 - Complex conjugate $\overline{z} = a ib$
 - Real part Re(z) = a
 - Imaginary part Im(z) = b
 - Modulus $r = |z| = \sqrt{a^2 + b^2}$
 - Phase angle $\theta = arctan(\frac{b}{a})$
- 3. Another from (Euler formulas) $z = r*e^{i\theta} = r*(\cos(\theta) + i*sin(\theta))$

6.2Fourier series

1. Fourise Series

Fourise Series
$$g(x) = \frac{a_0}{2} + \sum_{k=1}^{\infty} [a_k cos(k * \frac{2\pi x}{b-a}) + b_k sin(k * \frac{2\pi x}{b-a})]$$

$$a_k = \frac{2}{b-a} \int_a^b f(x) * cos(k * \frac{2\pi x}{b-a}) dx$$

$$b_k = \frac{2}{b-a} \int_a^b f(x) * sin(k * \frac{2\pi x}{b-a}) dx$$

- 2. Proposition 4.1
 - f(t) even, $b_k = 0$
 - f(t) odd, $a_k = 0$
- 3. Theorem 4.1 Fundamental Convergence Theorem for Fourier Series

Theorem in Function Convergence Theorem for Fourier Series
$$V = \{f(x) | \sqrt{\int_a^b f(x) dx} < \infty\}$$
 then all $f(x) \in V$ there exists a_0, a_k, b_k such that $g(x)$ converge to $f(x)$ for $n \to \infty$ in the sense that $\sqrt{\int_a^b (f(x) - g(x))} = 0$

4. Complex Fourier Serise
$$h(t) = \sum_{k=-\infty}^{\infty} c_k e^{ikt}$$

$$c_k = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) e^{-ikt} dt$$

5. Relationship

$$c_k = \frac{1}{2}(a_k - ib_k)$$

6. Proposition 4.2

•
$$\overline{c_k} = c_{-k}$$

•
$$a_{-k} = a_k, b_{-k} = b_k$$

•
$$a_k = 2Re(c_k, b_k = -2Im(c_k))$$

•
$$b_0 = 0, c_0 = \frac{1}{2}a_0$$

7. Theorem 4.2 h(t) = g(t)

6.3 Fourier Series and Orthogonal Basis

- 1. Basic definition
 - scalar produxt $\vec{x} * \vec{y} = x_1 y_1 + x_2 y_2 = \langle \vec{x}, \vec{y} \rangle$
- 2. Orthogonal Basis Let $B = \{\vec{e_i}\}$ be the Orthogonal Basis \iff $<\vec{e_i},\vec{e_j}>=c_{ij}$ where c_{ij} is nonzero \iff i=j

6.4 Discrete Fourier Transform

- 1. Nth root of unity $\begin{aligned} W_N^k &= e^{\frac{2k\pi i}{N}} \\ \text{with property} &(W_N^k)^N = 1 \\ W_N^{N-k} &= W_N^{-k} \end{aligned}$
- 2. Direct trnasform $F[k] = \frac{1}{N} \sum_{n=0}^{N-1} f[n] W_N^{-kn}$
- 3. Inverse discrete Fourier transform $f[n] = \sum_{k=0}^{N-1} F[k] W_N^{kn}$
- 4. Fast transformation if $N = 2^m$, then
 - g[n] = f[n] + f[n + N/2]
 - h[n] = f[n] + f[n + N/2]
 - $F[2l] = \frac{1}{2}DFT\{g[n]\}$
 - $F[2l+1] = \frac{1}{2}DFT\{h[n]\}$

Have $O(N * log_2(N))$ runtime