
CS 116x Winter 2015
Craig S. Kaplan

Assignment 06: Recursion and Randomness
Due date: Wednesday, 11 March, 12:00pm

Question 1: Substitution tilings

In a substitution tiling, there is a fixed set of distinct tile shapes (a single shape in the examples in this
assignment). There’s also a rule that tells you how to replace each tile shapewith a set of smaller copies
of the same tiles. You can use these rules to lay out as many tiles as you want: start by drawing a single
tile that’s big enough to cover the region you want to fill, and apply the substitution rules repeatedly
until you’ve got lots of small tiles. If you’re interested, you can find many, many amazing examples of
substitution tilings online at The Tiling Encyclopedia.

It turns out that (some of) these tilings can be drawn in a very natural way using the same kinds of
techniques we used to draw common fractals like the Sierpiński Gasket: we write a recursive function.
The base case of the function draws a single tile; the recursive case divides the tile into smaller copies
of itself, each one represented via a recursive call.

Your goal of this assignment is to write a sketch that draws a substitution tiling. Two tilings are pre-
sented below. You do not need to complete both sketches! You can pick either one and just submit
that sketch. If you wish, you can complete both and receive some bonus marks.

The Chair Tiling

A “chair” tile is a shape that looks like three squares glued together (in the picture above, it’s drawn on
its side to match Processing’s coordinates). A chair can be subdivided into four chairs, each of which
is exactly half the width and height of the original. This process can be continued to produce a tiling.

Using the starter code provided in A06chair.zip, write a single recursive function to draw the chair
tiling elaborated to any desired number of levels. The tiles will fill up exactly three quarters of the
sketch window. The provided draw() function translates and scales the world so that the initial chair
is assumed to fit inside a unit (1× 1) square. With that in mind, you can proceed as follows:

1

http://tilings.math.uni-bielefeld.de/substitution_rules
http://tilings.math.uni-bielefeld.de/substitution_rules/chair


• First, write the base case. At Level 0, all you need to do is draw a single copy of the chair. Use the
functions beginShape(), vertex(), and endShape(). Even if you leave the recursive case
completely blank, you should already by able to test the base: set the number of recursive levels
to zero and make sure you get a picture like the leftmost one above.

• Next, write the recursive case. For this tiling, follow themethod used to draw the Sierpiński Gas-
ket in conjunction with geometric context (see the ContextGasket sample sketch). Use four
distinct nested geometric contexts. Within each context, include a single recursive call to the
function to draw the tiling at the next smaller level. The only new bit is to figure out the right se-
quences of transformations (translations, rotations and scales) tomove the four recursive chairs
into position.

You can (and should) complete this question by writing a single recursive function and calling it from
draw(). You don’t need any global variables or other helpers.

The Pinwheel Tiling

In the Pinwheel Tiling, a single triangle with very specific dimensions can be subdivided into five
smaller copies of the same triangle. Again, this process can be repeated to create a tiling of the plane
(with some very weird properties that I won’t get into here).

Using the starter code provided in A06pinwheel.zip, write a single recursive function to draw the
Pinwheel tiling elaborated to any desired number of levels. The sketch window will contain a single
large triangular arrangement of small tiles, as in the drawings above. For this tiling, don’t use geomet-
ric context. Instead, use an approach similar to the explicit manipulation of triangle corners as in the
CornerGasket sample sketch. The recursive function will consume seven arguments: the current
recursive level, and the x and y coordinates of the three corners of the current triangle. The base case
just draws the triangle. The recursive case computes the necessary additional vertices of the smaller
subdivided triangles and makes five recursive calls. You’ll need to compute the coordinates correctly
and pass them to the recursive calls in the right order to make sure all small triangles are identical to
each other.

As before, write a single recursive function and call it from draw().

You’ll need to compute the coordinates of four new points relative to each recursive triangle, like the
three points in the Gasket example. This diagram explains where those points live:

2

http://tilings.math.uni-bielefeld.de/substitution_rules/pinwheel


A

Halfway
from A to C

2/5 of the way
from A to B

4/5 of the way
from A to B

Halfway from C
to the point below

B

C

You can use the built-in lerp() function to compute the coordinates from the x and y coordinates
forA,B andC , which will be passed in as arguments to the function. To do so, use lerp() separately
on the x and y values. Don’t assume that triangle ABC is oriented as in the diagram—triangles will
point every which way in the final tiling.

What to submit: On LEARN, you should submit a sketch entitled eitherA06chair orA06pinwheel, as
appropriate. Submit the entire sketch folder. If you wish, you can submit both, but you’ll only receive
bonus marks if they’re both completely correct—please don’t submit two half-broken sketches hoping
that they’ll add up to full marks. It’s better to pick one approach (the one you find more intuitive) and
focus on making it work perfectly.

Question 2: Archipelago

In this exercise you will use the built-in noise() function to construct something that looks like a
map of an imaginary archipelago. Because of the coherence of noise(), it will be possible to pan
around and explore a conceptually infinite expanse of islands. A correct solution must display a map

3



like the one above, and permit panning in the style of Google Maps or the sketches we experimented
with during Module 06 lectures.

At some level, this sketch will resemble the TenPrintScroll and Truchet examples that were used
as part of Module 06: you will iterate over every cell in a grid and use noise() to generate “random”
numbers. In this case, the cells are individual pixels: you need to iterate over every pixel in the sketch
window. When the noise value is less than some threshold, you assign that pixel to land and colour it
green; when it’s greater, you assign the pixel to water and colour it blue.

Manipulating the individual pixels in a sketch window follows a standard programming idiom, based
on calling loadPixels(), writing to the sketch’s pixels[] array, and calling updatePixels().
Examples of doing this can be found in Processing’s online documentation for these functions.

With that in mind, you can proceed as follows:

1. Create a new sketch with a 640× 480 window.

2. Create a draw() function. The function should use the idiom mentioned above to write to ev-
ery pixel in the sketch’s pixels[] array. Use nested loops over y and x, so that you can call
noise() with the pixel’s two-dimensional coordinates. As a test, write a colour to every pixel
that shows that you’re obtainingnoise values correctly—for example,mapnoise tohueor bright-
ness.

3. Nowdefine a constant scaling factor that’smultiplied intox and ywhen computing noise values,
as in done in TenPrintNoise. This scaling factor will allow you to decide on the granularity
of your archipelago (i.e., lots of tiny islands versus a few larger ones). Choose an aesthetically
pleasing value; we won’t vary scale dynamically in this sketch.

4. Turn the noise visualization into an imaginary map. Define a trehshold value between 0 and
1. Check each noise value against this threshold; assign smaller values to land and larger val-
ues to water. Choose appropriate colours for each, and choose a threshold value that gives the
appearance of islands in a sea.

5. Finally, add panning. You can easily borrow ideas from sketches shown in class. Define two
global translation variables that are used to offset coordinates passed to noise(), and write a
short mouseDragged() function that changes those global variables. That should be all you
need.

A complete implementation can be written in about 35 lines of code, not including comments. That’s
not a required target, just a suggestion that the solution need not be very complicated. Note that you
don’t any geometric context functions to complete this sketch.

Keep in mind that the noise() function is far from perfect. Don’t be surprised if, some of the time,
your archipelago has some symmetries in it, as if half the islands are a mirror reflection of the other
half. You don’t have to try to fix that, though it may be possible to use the noiseDetail() function
to do so.

If you’re interested, there are many possible ways to enhance this simple sketch.

4



• Add cities as dots on themap. This is fairly tricky. You’ll want tomake sure the cities are on land,
relatively sparse, and not clumped too closely together. Itmight be possible to use further layers
of noise to decide on city locations, in which case the cities might even pan around coherently
with the map.

• Add other land features. It may be possible to specialize land colours to add white for polar
regions, beige for desert, etc.

• Add zooming. Adding ControlP5 buttons for zooming in and out is easy; making the zoom actu-
ally work relative to the centre of the sketch window is probably harder. Making the hypothet-
ical city dots work consistently at multiple zoom levels is probably very difficult.

• Er, simulate global warming by animating the cutoff threshold between land and water.

What to submit: On LEARN, you should submit a sketch entitled A06archipelago. Submit the entire
sketch folder.

5


	Substitution tilings
	Archipelago

