
CS 116x Winter 2015
Craig S. Kaplan

Module 02
Input and Output

Topics

• Reading and displaying images and illustrations
• Writing images, illustrations, and animations
• Reading text
• Writing text

Readings

• Getting Started, Pages 78–83, 164–167
• Learning Processing, Sections 18.3, 18.4, 21.3, 21.4

d
Introduction

So far, nearly everything you’ve done in Processing
has been self-contained. To create practical tools, we
need ways to exchange information with the outside
world.

Most computer systems are backed by a filesystem, a
place where files can be stored more permanently.
Modern filesystems are very large and very
complicated. Here’s what my computer says about the
size and number of files in my home directory:

There are other reasons why filesystems are complex:

• They’re usually heterogeneous: your files can be
stored across multiple physical devices, including “in
the cloud”.

• The organization of your files (and even their names)
depends very heavily on your operating system.
Mac is very different from Windows, and iOS is very
different from Android, and it’s annoying to write
code that knows about all these differences.

This complexity is antithetical to the spirit of
Processing. So Processing offers us a way of hiding
most of the complexity when programming, by having
your sketch folder serve as a gateway to the outside
world. By default, when you ask to read a file,
Processing looks for that file in your sketch folder;
when you write a file, it puts the output in your sketch
folder. The easiest way to access your sketch folder is
from within the Processing environment:

d
Reading images

At the end of CS 115x you learned how to load images
into Processing. First you need to move or copy the
image into your sketch folder. That’s most easily done
using the “Add File...” command in the “Sketch”
Processing menu.

It’s possible to ask Processing to
open any file at all, if you know
the file’s “absolute path”. We
won’t need to do that in this
course. Usually, it’s also possible
to pass in a URL instead of a
filename, in which case the file
will be downloaded from the
web. We’ll probably see that later
in the course.

“Add File...” will actually put files
in a “data” subfolder of the
sketch folder, creating that folder
if necessary. In fact, it doesn’t
matter: Processing will look for
files in both the main sketch
folder and the data subfolder, if it
exists.

Use the built-in function loadImage(), passing in a
String with the name of an image file as input, to
read an image into a sketch. You’ll get back an object
of type PImage. The most common practice is to
define a global variable of type PImage and set that
variable to the result of loading an image in your
setup() function. Then, you can use the built-in
image() function to display an image at any position
in your sketch, optionally rescaling it to fit any
rectangle. See the reference documentation for
PImage for information on other things you can do
with images (notably, find out an image’s width and
height, and read its pixels one-by-one).

d
Reading illustrations

If you’ve used illustration software like Adobe
Illustrator, you know that vector graphic images are
very important in art and design, in addition to plain
old pixels. It would be nice to have a way to import
vector illustrations directly into Processing, without
having to convert them into raster images (i.e., pixels)
first.

Fortunately, this turns out to be as easy as working
with raster images. In fact, most of the time you can
simply replace “image” with “shape” in the previously
mentioned functions for dealing with images:

PImage ⟺ PShape
loadImage() ⟺ loadShape()

image() ⟺ shape()

Processing uses SVG as its native vector illustration
format. If you have an illustration in another format
(PS, EPS, PDF, etc.), it’s fairly easy to find software to
convert to SVG. See the reference documentation for
PShape for more information on working with
illustrations. I can imagine that the disableStyle()

Example sketch: TintGrid

If you call loadImage() in
draw() instead, most likely
everything will continue to work,
but your program will be slower
because you’re re-reading the
image from the filesystem every
frame. Most of the time that’s not
what you want!

Processing’s SVG support is good
but incomplete. It’s a good idea
to stick to the most common
parts of the SVG standard.

Processing definitely doesn’t
understand embedded CSS used
to style SVG paths. When saving
from Illustrator, I had to set “CSS
Properties” to “Style Attributes”
under advanced SVG saving
options in order to make sure it
didn’t use any CSS.

method might occasionally be useful.

d
Writing images

It’s incredibly easy to save a “screenshot” of a running
sketch, i.e., the current contents of the sketch window.
Just use the built-in function save(), passing in the
name of the file you wish to save to. I recommend
saving to images in PNG format.

You can also use the built-in function saveFrame(),
which generates a sequence of filenames for you. This
could be useful for stitching saved images together
into an animation (see, for example, the “Movie Maker”
feature in Processing’s “Tools” menu).

d

Example sketch: DisplaySVG

Example sketch: Moustachify

void keyPressed()
{
 if(key == 's') {
 save("screen.png");
 }
}

You could add this code fragment to
just about any sketch to add in a handy
screenshot feature (assuming it doesn’t
already have a keyPressed() function).

It turns out that loadShape()
can also be used to load 3D
meshes in the Wavefront OBJ
format! 3D is much more
complicated to work with, but I
might get to it later in the term.

Animated GIFs in Processing

It seems as if the art form of animated GIFs
(pronounced with a hard g) is more popular than ever,
mostly due to the enduring appeal of cats falling off
of things. There is a subculture in digital art devoted
to the creation of abstract, often mathematical,
animated GIFs: search for “abstract” on Giphy, and
look up artists such as David Whyte and David
Szakaly.

There’s a library called GifAnimation that can easily be
used within Processing. It’s able to create new
animated GIFs frame-by-frame and write them to files.
It can also open animated GIFs and extract all the
frames.

However, this library is not built in to Processing: you
must specifically ask to use it, which is something we
haven’t seen before. The first step is to make sure you
have the library. Processing includes an easy-to-use
manager for downloaded libraries. Select “Import
Library ⟹ Add Library...” from the “Sketch” menu to
open it.

http://beesandbombs.tumblr.com/
http://beesandbombs.tumblr.com/
http://dvdp.tumblr.com/
http://dvdp.tumblr.com/
http://dvdp.tumblr.com/
http://dvdp.tumblr.com/

In this case, scroll down to GifAnimation and click
“Install”.

You still need to tell Processing that you want to use a
given library in each new sketch. If you now select
“Sketch ⟹ Import Library ⟹ GifAnimation”,
Processing will insert a line of code at the top of your
sketch:

You don’t actually need to use the Processing menu
for this—you’ll get the same result simply by typing
this line of code at the start of your sketch.

An import directive is a feature that Processing
inherited from Java. It finds all the public declarations
in an external library, and makes them available in the
current sketch. Without the import, your sketch won’t
have access to the features of the library, even if you
know they’re out there somewhere. Most libraries
include documentation that tell you what you need to
import.

See the documentation for the GifAnimation library,
and the examples below, for information about how to
read and write animated GIFs. Two starting points:

• The function Gif.getPImages() loads an animated
GIF and gives you back an array of PImages, one per
frame.

• The type GifMaker is an engine for creating new
animated GIFs. You create a new GifMaker, send it
repeated requests to record individual frames, and
then save the result to a file. You can set the looping
characteristics of the GIF and the time delay after
every frame.

import gifAnimation.*;

Example sketch: SineGIF

Example sketch: StarGIF

Note that to start writing a GIF, you use a line of code
like this:

This bothers me. In order to use the library, you need
to use both new and this, keywords related to Object-
Oriented Programming in Java. At this stage in our
use of Processing, we have no choice but to treat
these as black magic. Just write a line of code like the
one above without worrying too much about what it
means. Hopefully, by the end of the course the
meanings of new and this will be clear. To editorialize
for a moment, this is just a bad decision by the
creators of Processing. By sticking too closely to the
structure of Java, they force us to use awkward code.
It might have been better to develop a simplified
library system that allows developers to avoid
exposing parts of the language that should remain
hidden.

d
Writing illustrations

So far we can read and write images, and read
illustrations. We should fill in the obvious gap, and
learn how to create new vector illustrations from
within a Processing sketch.

Happily, this turns out to be very easy in Processing,
using the PDF library that ships with Processing. The
PDF library behaves like the GifAnimation library
above—you need an import directive to declare that
you’ll be using it:

Example sketch: GIFFrames

GifMaker mygif = new GifMaker(this,
" "output.gif");

import processing.pdf.*;

But unlike GifAnimation, it comes pre-installed.

Once you’ve got the PDF library imported, a line like

Is more or less all you need to get started. This line of
code causes all subsequent drawing functions (e.g.,
line(), ellipse()) to silently draw a second copy of
themselves in the output file. And unlike the sketch
window, these versions are true vector graphic
elements: pure, scalable geometry. The only other
step is to stop recording when you’re done drawing:

Here, at last, is a great way to incorporate Processing
into a graphic design pipeline: write a sketch that
solves some particular design problem, and load the
output into software like Adobe Illustrator for further
editing. I have created similar programs many times as
part of my research.

d
Writing text

So far, all the reading and writing we’ve been doing
have been based on well-known file formats (e.g.
JPEG, GIF, SVG, PDF), and we have relied on other
code to serve as an intermediary in making sense of
files in those formats for us. Sometimes, though, we
have information we want to save for later for which
there is no specific format. In those cases, it’s usually
simplest to write out plain text. Fortunately, this is
easy in Processing as well—it looks a lot like the
familiar println() function.

 beginRecord(PDF, "output.pdf");

endRecord();

Example sketch: RecordPDF

It’s also possible to record multi-
page PDFs. We probably don’t
need that feature, but see the
documentation for the PDF
library for more details.

As you know, println() sends its output to the
Console window underneath your sketch’s source
code. It’s possible to create other objects that can
receive println() messages:

A PrintWriter is an object that understands
println(), but that sends its output directly to a file.
Note that you need to say writer.println() for a
particular object writer to send text to that writer’s
file. If you continue to use regular println(), text will
go to the Console, as before. In fact you could have
many PrintWriter objects active at once, all writing
to their own files.

When you’re done writing, you need to call the
flush() method to make sure the PrintWriter isn’t
holding any part of your file in memory instead of on
disk, and then call close() to tell Processing you’re
done with the file.

d
Reading text

Yes, there is a createReader() function that fits
nicely with createWriter(). But I’m not going to
teach that approach. The problem is that in order to
read files that way, you need to be aware of exception
handling (i.e., try and catch), another advanced
programming technique.

void setup()
{
 PrintWriter writer = createWriter("output.txt");
 writer.println("This will go directly into the file.");
 writer.println("So will the number below:");
 writer.println(3.1415926);
 println("But this will still be printed to the Console.");
 writer.flush();
 writer.close();
 exit();
}

If it matters, reading and writing
of text files is actually done in
UTF-8 encoding, so you can
safely use Unicode if you want.

Fortunately, we can skip that messiness with the much
simpler built-in function loadStrings(). You call
loadStrings() with the name of the file to be read,
and get back an array of Strings, each of which
contains exactly one line from the file.

d
Applications of input/output

Here are just a few sample uses of input/output.

• Logging: Sometimes, it isn’t enough to write
debugging information or other status messages to
the Processing Console. The information can scroll
too fast and be lost, or there could simply be too
much of it to read comfortably in that tiny window. It
can sometimes be useful to generate a huge torrent
of information into an external file, which you can
then examine later at your leisure. This can be a
valuable way to find bugs in complex programs,
since you have a detailed record of what happened.
Many software tools you use regularly leave behind
logs, even if you never see them. In OSX, have a look
in “Library/Logs” inside your home directory.

• Persistence: One use of persistence is to keep track
of enough of a running program’s state that you can
jump back into that state if a program is stopped
and restarted. Before a program halts, you write the
current state out to a file. At startup, you check if
that file exists and use it to reconstruct the state if it
does. This is a common idiom. On mobile devices,
you can save energy by terminating apps when the
user isn’t actively interacting with them. Persistence
allows those apps to come back to life seamlessly.

• Data visualization: If you generate data from some
other source, Processing can be a good way to load
that data and create novel visualizations of it. Later
we’ll see how to read CSV (comma-separated
values) files, which would allow you to draw your
own custom charts and graphics based on Excel
spreadsheets.

