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Module 04 
Physics and Animation 

Topics 

• Newton’s first law: moving things at constant speed 
(in one dimension) 

• Newton’s second law: applying forces 
• Newton’s third law: handling collisions 
• Two-dimensional physics 
• Using a physical simulation library 
• Animation principles and easing 

Readings 

• Getting Started, Pages 91–96 
• Imaginary Institute Tech Note 04, up to but not 

including “Using the Curves” 
• Nature of Code, Chapters 1 and 2 (Chapter 5 is 

relevant too, but we’ll use a different library) 

d 
Introduction 

Physics? Haven’t we suffered enough? 

A basic intuition for natural (i.e., physically plausible) 
motion is extremely useful in many digital design 
contexts. As computation becomes cheaper, and 
we’re able to pack more visually appealing effects into 
apps and operating systems, we’re seeing more visual 
effects that could be interpreted as “physical”.  Here 
are a few examples: 

• In a lot of touch-based interfaces (like mobile 
phones), scrolling doesn’t stop dead at the end of a 

http://imaginary-institute.com/resources/TechNote04/TechNote04.html
http://natureofcode.com/book/chapter-5-physics-libraries/


document. Instead, you’re able to “overshoot” the 
end of the document slightly. When you let go, the 
document “bounces back” to its end position as if 
on a spring. Touchpad scrolling is similar on many 
laptops. 

• When you launch an application from the OSX Dock, 
or when a notification appears, the application’s icon 
appears to bounce up and down in the dock in a 
physically plausible way. 

• Websites play lots of CSS tricks to embed simple 
physics into browsing. For example, when you 
expand a tweet or the comments of a Google Plus 
post, the expansion starts slow, speeds up, and then 
slows down again when it’s near completion.  Here’s 
a simple example. 

• Many popular games rely directly on simple models 
of physics. In 2D, the most famous example is Angry 
Birds. 

How can we explain the seeming enthusiasm for 
physical systems in games and user interface? There’s 
certainly no need for it—it’s just as easy, if not easier, 
to simulate motion on the screen that violates the 
laws of physics (teleportation, for starters). 

Every physical object in the real world must obey the 
laws of physics[citation needed], and so your perception of 
motion is influenced at a very deep level by what’s 
physically plausible. I would argue, then, that natural 
motion has greater appeal, looks more “organic”, and 
is easier and faster to interpret. It also can provide us 
with subtle visual cues. When an object moves with 
acceleration and deceleration, we can anticipate the 
extent and duration of that motion. These same 
principles have formed the core of effective animation 
for nearly a hundred years. 

At the outset, it may seem like we’re in for a 
significant challenge in simulating the laws of physics. 
But there are a few reasons for hope: 

• You have a lifetime of direct experience of physical 
laws, whether you’re aware of it or not. Your intuition 

Example sketch: Anticipation

http://tympanus.net/Tutorials/CSS3Accordion/


will be a powerful aid in knowing whether your code 
is correct. 

• The amount of physics we actually need is minimal. 
Newton’s Three Laws of Motion account for basically 
all of our everyday experience of dynamics, and we 
don’t even need to obey them perfectly. No 
quantum mechanics or relativity here! 

• Computation (that is, simulation) takes a lot of the 
math out of physics. This will become more clear as 
we work our way through simple examples. If I throw 
a ball in the air, it take a bit of math to figure out 
how high it will go before it falls back down. But I 
can just simulate the ball’s motion moment by 
moment (or frame by frame in Processing), and 
watch it find its peak on its own. 

• Once we work through the basics of physical 
simulation, we’ll simply hand the problem over to a 
library that will handle it much better than we ever 
could. At that point, physics becomes “just another 
feature” of Processing. 

 

d  
Newton’s laws of motion 

To a first approximation, the kinds of physical motion  
matter in computer software are a direct expression of 
Newton’s Laws of Motion. Here they are, translated 
into English: 

I. Every body persists in its state of being at rest 
or of moving uniformly straight forward, 
except insofar as it is compelled to change its 
state by force impressed. 

II. The alteration of motion is ever proportional 
to the motive force impress'd; and is made in 
the direction of the right line in which that 
force is impress'd. 

III. To every action there is always opposed an 
equal reaction: or the mutual actions of two 
bodies upon each other are always equal, and 
directed to contrary parts.

The most important thing 
Newton left out is relativity, 
which Einstein proposed in the 
early 1900s. Einstein’s 
equations really do make 
Newton’s wrong. But the 
amount of error is so tiny, and 
so irrelevant in everyday life, 
that we can ignore it 
completely except in very 
special circumstances.

http://blogs.discovermagazine.com/crux/2014/08/29/like-gps-thank-relativity/
http://blogs.discovermagazine.com/crux/2014/08/29/like-gps-thank-relativity/


Those are still pretty complicated statements. Let’s 
take them one by one, simplify them, and see how 
they can be modelled with programming. In our first 
pass at applying these laws, we’ll work in a one-
dimensional universe: objects are constrained to move 
along a line. 

d  
The first law 

The first law is usually written “An object in motion 
tends to remain in motion. An object at rest tends to 
remain at rest.” Or, more succinctly, “Keep doing what 
you’re doing”. 

Simulating an object at rest is easy: keep drawing it in 
the same location every frame. What about an object 
in motion? Let’s assume, as Newton did for this law, 
that there are no forces that act on the object (no 
gravity, no friction, no wind, no built-in engine, etc.). 
This object will experience uniform motion: it will 
move equal distances in equal amounts of time. If we 
choose a unit of distance (inches, metres, furlongs) 
and a unit of time (seconds, hours, fortnights), we can 
say that the object is moving at a constant speed: 
some fixed number of distance units per time unit. 

For simplicity, in Processing I will measure distance in 
pixels and time in frames (assuming my sketch runs at 
a roughly constant frame rate). I might then reckon 
speed in pixels per frame. In that case, how does an 
object’s position change every time I draw a frame? 

Assuming a constant frame rate 
can be dangerous. If the scene 
gets very complex, or the 
computer slows down, or 
internet bandwidth drops out in 
a multiplayer game, you’d like 
for the simulation not to lose 
track of time. For that, you 
could switch to a more complex 
implicit method. Instead of 
looking at the current frame 
number, use the current time 
(via the millis() function in 
Processing) to decide where to 
put everything. That’s too tricky 
for this course, especially when 
we start to take forces into 
account.



We can generalize from this example to a principle for 
physical simulation: at every step, use speeds to 
update positions. In light of this approach, it’s also 
clear that “at rest” is just a special case of “in motion”, 
in which we have speed == 0.0. 

d  
The second law 

As far as I know, Newton’s second law doesn’t really 
have an informal statement in English. Instead, it’s 
usually expressed as an equation, one of the most 
important in all of physics: F=ma. That is, force is the 
product of mass and acceleration. 

In practice, it might be better to divide both sides by 
m, ending up with a=F/m. Written this way, the 
equation tells us that if a force is applied to an object, 
the force produces acceleration. The amount of 

float position = 0; 
float speed = 3.77; 

void setup() 
{ 
  size( 800, 100 ); 
} 

void step() 
{ 
  position = ??? 
} 

void draw() 
{ 
  // Run the physical simulation for 
  // one step 
  step(); 
   
  // Draw the world 
  background( 80 ); 
  ellipse( position, 50, 50, 50 ); 
}

Example sketch: FirstLaw



acceleration depends on the object’s mass. The same 
force will produce less acceleration when applied to a 
heavy object than to a light object (you can kick a 
soccer ball farther than you can kick a bowling ball). 

For now, let’s ignore mass. We’re only dealing with 
one object, and it turns out that an object’s mass 
becomes much more important when it interacts (i.e., 
collides) with other objects. For now, then, we’ll say 
that force determines acceleration directly. Let’s look 
at some simple examples of how that works out in 
code. 

Gravity 

We’ll start with a force we’re all familiar with, and that 
few humans have escaped: gravity. Every bit of stuff in 
the universe pulls on every other bit with a tiny 
amount of gravitational force, but we’re only 
interested in the simplest example: the earth’s 
gravitational force on things near its surface. 

The real equations that govern your gravitational 
relationship to the earth aren’t worth writing down 
here. If we did write them down, we would quickly 
discover two important facts: 

1. Your acceleration due to gravity doesn’t depend 
on your mass. That is, a feather and a bowling ball 
will fall at the same rate. 

2. The earth is so big, and you are so small, that as 
long as your altitude stays roughly constant, we 
can pretend you experience a constant force. 

Putting that together, we arrive at a bit of physics that 
you may remember from high school: everything 
accelerates towards the earth at 9.8 m/s2. 

What’s that in pixels per frame squared? That is, how 
do I convert distances and times to the correct scale 
for a Processing sketch? There’s no one right answer 
to that question. If I draw a sketch that shows a circle 
dropping to the bottom of the window, I would 
choose a different acceleration if the circle is a 
meteorite crashing to the ground versus a ball bearing 
dropping onto a table. The best advice is to try a few 



values and decide what looks best for your 
application. 

How do we actually incorporate acceleration into a 
Processing sketch? Acceleration is nothing more than 
the rate at which speed changes. Recalling from the 
First Law that speed is the rate at which position 
changes, this suggests that we perform a similar 
update. Thus we arrive at a second principle for 
physical simulation: at every step, use accelerations to 
update speeds. This kind of step-by-step update turns 
out to be very easy to express in code. 

This code is really a general model for objects that 
experience any kind of constant acceleration. Gravity 
is just the most obvious kind. 

float position = 0; 
float speed = 0; 
float accel = 0.2; 

void setup() 
{ 
  size( 100, 600 ); 
} 

void step() 
{ 
  // Update speed using acceleration 
  speed = ??? 
  // Update position using speed 
  position = ??? 
} 

void draw() 
{   
  // Run the physical simulation for 
  // one step 
  step(); 
   
  // Draw the world 
  background( 80 ); 
  ellipse( 50, position, 50, 50 ); 
}

Example sketch: SecondLaw



Sliding friction 

A hockey puck sliding on ice will eventually slow down 
(i.e., decelerate) and stop. It experiences friction with 
the ice surface—in every small moment of time, the 
puck loses some of its speed, as a bit of its energy is 
turned into heat. 

The low-level mechanism of friction is complex. For 
our purposes, what matters is that friction produces 
deceleration, and that the amount of deceleration is 
proportional to the object’s current speed. We 
therefore model sliding friction using a kind of 
damping factor. 

float position = 0; 
float speed = 10.0; 

// Proportion of speed lost 
float damping = 0.02;  

void setup() 
{ 
  size( 600, 100 ); 
} 

void step() 
{ 
  // Lose some speed due to friction 
  speed = ??? 
  // Update position using speed 
  position = ??? 
} 

void draw() 
{   
  // Run the physical simulation for 
  // one step 
  step(); 
   
  // Draw the world 
  background( 80 ); 
  ellipse( position, 50, 50, 50 ); 
}

Example sketch: SlidingFriction



Sliding friction becomes even more complicated as an 
object gets very close to stopping. It would probably 
be best to include some code of the form “when the 
speed goes below a minimum threshold, set it to 
zero”. (Exercise: do it!) 

Springs 

We use a simple model for an idealized spring, which 
captures a lot of the high-level behaviours of springs 
in the real world. A spring has a “rest length”: the 
length it wants to have. If you stretch it or squeeze it 
to some other length, it exerts a force to try to get 
back to its rest length. The force is proportional to 
how far the spring is from its rest length. (If you’ve 
ever tried a “bungee run” at a carnival, you know that 
each step is harder than one before it.) This simplified 
model is called Hooke’s Law, and is usually written in 
the form F = -kx. The constant k is a physical property 
of the spring called its stiffness. Remembering that 
we’re still ignoring mass, we can translate this law 
directly into a new simulation. 



This spring never loses energy. It will oscillate back 
and forth forever, which looks unrealistic. We can 
model the spring slowly losing energy using the same 
damping calculation we used in the case of sliding 
friction. 

float position = 800; 
float speed = 0.0; 

float rest_length = 400.0; 
float stiffness = 0.003; 

void setup() 
{ 
  size( 800, 100 ); 
} 

void step() 
{ 
  float disp = position - rest_length; 
  speed = ??? 
  position = ??? 
} 

void draw() 
{ 
  // Run the physical simulation for 
  // one step 
  step(); 
   
  // Draw the world 
  background( 80 ); 
  ellipse( position, 50, 50, 50 ); 
}

Example sketch: Spring

Example sketch: DampedSpring



d  
The third law 

Newton’s third law is apparently about “the mutual 
actions of two bodies upon each other”. In most 
simple cases, that refers to collisions. 

Modelling collisions is quite complicated. Even the 
collision of two circles in 2D can be hard to wrap your 
head around (if the game of Pool is any indication). 
Plus, to model collisions accurately we’d also need to 
start taking the masses of objects into account. We’re 
not going to try to implement that much complexity 
ourselves. But let’s have a look at one simple type of 
collision that we can simulate relatively easily: we’ll 
simulate a ball that bounces off the bottom of the 
screen. 

When the ball meets the virtual floor, Newton’s law 
tells us that the ball imparts a force upon the floor, 
and the floor imparts an opposite force upon the ball. 
In theory, we’d have to simulate the floor accelerating 
downward away from the ball as a result! In practice, 
we effectively assume that the floor has infinite mass, 
so that it can never be made to move. As a result, the 
floor transfers all of the ball’s energy back into it, and 
the ball leaves with its speed reversed. 



As with springs, we usually factor in a damping factor 
so that at each bounce, the ball loses some of its 
energy. 

In summary, there are five main steps involved in 
running a physics simulation of this kind: 

float position = 0; 
float speed = 0; 
float accel = 0.4; 

void setup() 
{ 
  size( 100, 600 ); 
} 

void step() 
{ 
  speed = ??? 
  position = ??? 
   
   if( position+25 > height ) { 
    position = ??? 
    speed = ??? 
  } 
} 

void draw() 
{ 
  // Run the physical simulation for 
  // one step 
  step(); 
   
  // Draw the world 
  background( 80 ); 
  ellipse( 50, position, 50, 50 ); 
}

This code doesn’t quite work: 
the ball won’t return exactly to 
its original height. The main 
problem is that we’re not 
detecting the exact moment of 
collision. There are a few ways 
to correct that, but they’re 
fussy and not worth exploring 
here. In any collision code you 
implement, it’s fine to use the 
simple speed-reversing 
method. If you want to see a 
fuller solution, look at the 
ThirdLawAccurate sketch.

1. Calculate all the forces on each object. 
2. Use the forces to update the speeds. 
3. Use the speeds to update the positions. 
4. Process any collisions. 
5. Draw the current state of the world.

Example sketch: ThirdLaw



There isn’t necessarily one correct order in which to 
run these steps (theoretically, if the time difference 
between frames is small enough, it probably won’t 
matter). 

d  
Two-dimensional dynamics 

Obviously, there’s only so much you can do that’s 
visually interesting in one dimension. For the purposes 
of creating richer sketches, we should graduate to (at 
least) two dimensions. 

In two dimensions, the position of an object (say, a 
circle) will be given by two numbers (px,py). It turns 
out that a similar pairing of x and y coordinates 
suffices to capture speed and acceleration too, with 
one small change: we usually speak of velocity rather 
than speed. Velocity is a vector, an arrow of some 
length that points in some direction. In two 
dimensions and higher, speed is the length of this 
arrow. Acceleration also becomes a vector. 

We can actually get pretty far with just this simple 
reformulation. In fact, you can almost squint and 
ignore the vectors, and just pretend that you’re 
running two separate simulations, one in x and one in 
y. With that philosophy, we might produce this revised 
sketch to demonstrate the First Law: 



Similarly, with the Second Law we can treat a force in 
terms of independent components that affect an 
object’s x and y velocity components separately. For 
example, a thrown projectile will have its vertical 
position and velocity affected by gravity, while its 
horizontal speed will stay constant. 

// Position 
float px = 0; 
float py = 0; 
// Velocity 
float vx = 4.0; 
float vy = 5.3; 

void setup() 
{ 
  size( 500, 500 ); 
} 

void step() 
{ 
  px = ??? 
  py = ??? 
} 

void draw() 
{    
  // Run the physical simulation for 
  // one step 
  step(); 
   
  // Draw the world 
  background( 80 ); 
  ellipse( px, py, 50, 50 ); 
}

Example sketch: FirstLaw2D



In a simple example like this one, it’s also not too hard 
to implement collisions off all four walls of the sketch. 
(Exercise: do it!) 

Things start to get more complicated when we 
attempt to deal with the Third Law, and handle 2D 
collisions. There are two main problems: 

1. Calculating the effect of a general collision on the 
velocities of two bodies involves a lot of messy 

// position 
float px = 50; 
float py = 550; 
// velocity 
float vx = 2.0; 
float vy = -15.0; 
// constant acceleration 
float ax = 0.0; 
float ay = 0.3; 

void setup() 
{ 
  size( 400, 600 ); 
} 

void step() 
{ 
  // Update velocity using acceleration 
  vx = ??? 
  vy = ??? 
  // Update position using velocity 
  px = ??? 
  py = ??? 
} 

void draw() 
{  
  // Run the physical simulation for 
  // one step 
  step(); 
   
  // Draw the world 
  background( 80 ); 
  ellipse( px, py, 50, 50 ); 
}

Example sketch: SecondLaw2D



geometry. Even a ball bouncing off of a wall that 
isn’t horizontal or vertical uses some tricky math. 
Two general moving objects is even harder, but 
that’s well beyond the scope of this course! 

2. In one dimension, an object can collide only with 
the objects immediately to its right and its left. In 
two dimensions, there are many more ways that 
objects can collide. If you’ve got a bunch of 
objects floating around in your simulation, in 
theory you can test every pair of objects every 
frame for collisions. But that requires a lot of 
computation, and the amount goes up 
disproportionately with the number of objects (a 
computer scientist would call this a “quadratic time 
algorithm”). There are some very clever algorithms 
and data structures for organizing a scene to 
check for collisions efficiently, but that’s well 
beyond the scope of this course! 

And beyond that, there’s a completely separate mode 
of rigid motion that we haven’t talked about at all yet: 
rotation. Objects can spin in 2D. Spinning has its own 
versions of velocity and acceleration, and interacts 
with the three laws as we originally wrote them (for 
example, a collision can set a object spinning). It’s safe 
to say, then, that we’ve reached the end of what can 
comfortably be accomplished by coding physics from 
first principles. It’s time to bring out the big guns. 

d  
Physics engines 

A physics engine is a library that keeps track of all the 
positions, velocities, accelerations, collisions, friction, 
and other properties of a simulated world, allowing 
you to inject a bunch of objects and then run the 
simulation step by step. There are many physics 
engines available to programmers. They are a big deal 
in the entertainment industry. Many 2D and 3D games 
rely on realistic physics, and many movies simulate 
physics as an essential part of visual effects 
sequences. In fact, in 2015 the authors of the open-
source 3D physics engine Bullet Physics won a 

HCI researchers have also 
experimented with physics 
engines in desktop interfaces. 
Be sure to watch the famous 
“BumpTop” demo video.

https://www.youtube.com/watch?v=M0ODskdEPnQ
https://www.youtube.com/watch?v=M0ODskdEPnQ


technical academy award for their contribution to 
filmmaking. 

There are several physics engines available in 
Processing. We’re going to use one called Fisica. 
Fisica is a Processing “wrapper” around the Java 
library JBox2D. JBox2D is itself a Java translation of 
an earlier C++ library Box2D, a very popular 2D 
physics library perhaps most famously used in Angry 
Birds. 

At this point, the task is to learn the coding practices 
of yet another library. First, make sure you have Fisica 
installed (via “Add Library…” in Processing). Now you 
can follow the recipe to add physical simulation to 
your sketch. The process will look a bit like what we 
did for ControlP5. First, tell Processing that you want 
to use Fisica in this sketch:  

Next, declare a global variable that will represent the 
entire physics engine. The relevant type is FWorld. 

In the setup() function, we can now initialize the 
world and start adding objects to it. In ControlP5, we 
did so by sending “add” messages to a global object 
that I called cp5. With Fisica we’ll create new objects 
directly using the magic word new in Processing. 
Fisica objects are all variations on the type FBody. We 
can then ask the world object to take ownership of  
the new body. 

import fisica.*;

FWorld world;

http://bulletphysics.org/wordpress/?p=427
http://www.ricardmarxer.com/fisica/


So far this sketch doesn’t do anything. We still need to 
add a draw() function. When using the Fisica library, 
the draw() function will usually do two things: run the 
simulation for one time step, and then draw the world: 

Note that we never draw anything ourselves—we’ve 
basically handed control of the world over to Fisica. 
The library needs to know about all the objects in the 
world in order to track their dynamical properties, so 
we may as well allow the library to draw the world for 
us too. 

As with ControlP5 Controllers, you can set a bunch of 
properties on Fisica bodies: physical properties like 
position and velocity, and also rendering properties 
like strokes and fills: 

void setup() { 
  size(400, 400); 

  Fisica.init(this); 

  world = new FWorld(); 
  
  FBody circle = new FCircle( 50 ); 
  circle.setPosition( width/2, 25 ); 
  world.add( circle ); 
}

void draw() { 
  background(255); 

  world.step(); 
  world.draw(); 
}

FBody circle = new FCircle( 50 ); 
circle.setPosition( width/2, 100 ); 
circle.setVelocity( 0, -200 ); 
circle.setFillColor( #406080 ); 
circle.setNoStroke();



Plus, there are some handy convenience functions for 
doing things like adding bounding walls to the sketch: 

There are a few other standard objects that can be 
added to a Fisica world, most obviously boxes (FBox) 
and polygons (FPoly). And there are many properties 
that can be set both on bodies and on the world itself, 
to control forces like gravity, friction, restitution 
(energy recovery after a collision), and damping. 

Fisica assumes by default that objects you create are 
subject to direct manipulation (you can pick them up 
and move them manually, temporarily “overriding” the 
laws of physics. Of course, you can disable that for 
whichever objects you want. Conversely, you can 
check manually whether a given point in the sketch is 
inside any objects in the world, which allows you to 
attach things like click events to bodies. 

The best way to learn about these features is to 
browse the online documentation for Fisica and to 
look at many examples. The library itself comes with a 
set of standard examples; you can click on the icons 
on the Fisica web page to see the sketches in action 
and look at the source code for each one (a good 
starting point is “Buttons”). There are a few additional 
Fisica-related sketches at openprocessing.org. Fisica 
includes features we can’t spend time on, like joints, 
chains, and even some blobby fluid objects. You can 
also track collisions and decide what to do when they 
happen. It’s possible to create very elaborate (and 
very satisfying) sketches using this kind of physical 
simulation, up to and including programs with the 
complexity of Angry Birds. I encourage you to play 
around to discover more. 

// Add a box around the world. 
world.setEdges(); 

// But remove all but the bottom edge. 
world.remove(world.left); 
world.remove(world.right); 
world.remove(world.top);

I’m probably lying—most likely, 
the demos won’t run in your 
browser, because it’s becoming 
increasingly difficult to launch 
Java applets in web browsers. If 
the demos don’t work, click on 
“source code” and copy the 
demo’s source code into a new 
Processing sketch. Most of 
them will work that way. You 
should also have the example 
sketches in the “libraries” sub-
folder of your Processing 
sketchbook, though that might 
be hard to find.

http://www.ricardmarxer.com/fisica/reference/index.html
http://www.openprocessing.org/collection/1373
http://openprocessing.org


d  
Animation principles and digital design 

Old animations (from the 1920s and 1930s) look pretty 
strange to our eyes. You can find lots of examples on 
YouTube—look for cartoons by Max Fleischer and Ub 
Iwerks, for example. While animators had figured out 
the basic illusion of motion, they hadn’t yet developed 
the aesthetic conventions that make animation look 
natural and appealing. 

It was Walt Disney (i.e., the actual person) who first 
codified principles of effective animation in the 1930s. 
A good reference for the ideas that came out of that 
studio is Disney Animation: The Illusion of Life by 
Thomas and Johnson (AKA “Frank and Ollie”). 

Computer animation went through a similar coming-
of-age. In this case it was John Lasseter of Pixar who 
first discussed the use of Disney principles in 
computer animation in his paper “Principles of 
traditional animation applied to 3D computer 
animation”. The effect of his philosophy was apparent 
in early Pixar shorts like Luxo, Jr. 

The standard principles of effective computer 
animation are a beautiful intersection between 
computation and visual aesthetics. We don’t have 
time to cover them all, but let me single out a few 
important ones. 

Squash and Stretch 

An object should deform to suggest the character of 
its motion. If we are animating a baseball being 
pitched and then hit, we might stretch the ball as it’s 
flying through the air to emphasize its speed, and 
squash it at the moment it hits the bat to show its 
reaction to the bat’s force. We exaggerate these 
effects to make them visible, but the result is 
appealing. 

Squash and stretch are useful to know about and to 
watch out for, but they’re fairly difficult to implement 

On the other hand, I’m really 
intrigued by Cuphead, a 
forthcoming videogame with a 
visual style inspired by 
Fleischer.

Off the top of my head, I’d say 
that stretch simulates the 
motion blur of a fast-moving 
object. Squash is real: a hit 
baseball really does deform 
briefly, as the back of the ball 
keeps moving even as the front 
is stopped by the bat.

http://cupheadgame.com/
https://classes.soe.ucsc.edu/cmps160/Spring05/p35-lasseter.pdf
https://www.youtube.com/watch?v=QFlEIybC7rU
http://cupheadgame.com/


effectively: deforming objects is much harder than 
moving them around. I’ve created a hacked-together 
demonstration, but let’s not stop to discuss how it 
works. 

Slow in, slow out 

Remember Processing’s lerp() function for linear 
interpolation? When trying to animate the motion of 
an object from A to B, it’s tempting to use 
straightforward linear interpolation at all intermediate 
positions. Assume that motion is controlled by a 
simple float variable t that ranges from 0 to 1. 

But that’s not how objects move in the real world. An 
object must necessarily accelerate out of a resting 
position—it can’t just start moving instantaneously. 
Similarly, objects don’t stop dead when they reach 
their destinations: they must decelerate to a stop. 
Animators refer to this phenomenon as “slow in, slow 
out”: when drawing intermediate frames in the 
animation of a motion, you don’t space the positions 
of the object evenly for even differences in time. This 
is an animator’s intuitive way of representing 
acceleration and deceleration. Slow in and out can 
make motion look more natural; and as I said at the 
start of these notes, it also allows us to form intuitive 
judgments about the character and endpoint of a 
physical motion. 

void draw() 
{ 
  // Assume that you're moving a circle  
  // from (startX,endX) to (startY,endY),  
  // and t is a parameter value between 
  // 0 and 1. 
  ellipse(  
    lerp( startX, endX, t ), 
    lerp( startY, endY, t ),  
    50, 50 ); 
  t = t + 0.01; 
}

Example sketch: SquashStretch



When programmers transform the simple linear 
interpolation between two values of a variable 
(whether it’s a point’s x position, an object’s size, 
transparency, etc.), they refer to the process as easing. 
There are many popular easing curves that achieve 
different aesthetic effects. Imagine drawing a graph 
showing time on the horizontal axis and an object’s 
position on the vertical. Here’s what simple linear 
interpolation looks like: 

On the other hand, a slow in, slow out curve might 
look more like this: 

See how the curve is “horizontal” at the start and end, 
giving it an overall S shape? That’s the defining 
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characteristic of slow in, slow out. It guarantees that 
the object will appear to accelerate and decelerate. 

It isn’t necessarily obvious how to define curves that 
happen to have that shape. We won’t try to do that in 
this course but we will at least try to use them. The 
trick is to “warp time”: pass the value t defined above 
through the function that defines the easing curve 
before lerping in the usual way. In full generality, we 
might end up with code like this: 

The most common form of easing is “cubic 
easing” (for reasons you don’t have to care about): 

There are other easing curves, but I won’t discuss their 
mathematical properties here. If you’re interested, I’ve 
included a sample sketch that demonstrates some of 
them. You can also see a lot more of them in action at 
easings.net (a demonstration of many easing curves in 
Javascript). 

float ease( float t ) 
{ 
  // Transform t through some mathematical 
  // function and return the new value. 
  return ??? 
} 

void draw() 
{ 
  float et = ease( t ); 
  
  ellipse(  
    lerp( startX, endX, et ), 
    lerp( startY, endY, et ),  
    50, 50 ); 
  t = t + 0.01; 
}

float ease( float t ) 
{ 
  return -2*t*t*t + 3*t*t; 
}

Example sketch: Easing

http://easings.net


Anticipation and follow-through 

Pure acceleration and deceleration aren’t the only 
possible ways to begin and end a motion. In fact, 
they’re a bit artificial, because objects rarely exhibit 
such perfect adherence to the laws of physics. Giving 
motions a bit more character can also help 
communicate the nature of a motion even more 
clearly than slow in, slow out. 

For example, living beings usually “anticipate” motion. 
There’s some kind of preparation or wind-up. Even 
with straight-line motion, a bit of anticipation can add 
a lot, and the initial backwards jerk can alert the user 
that something interesting is about to happen: 

At the other end of the curve, it’s hard for living 
beings to hit a target exactly. There’s often some kind 
of overshooting, followed by some kind of correction. 
It’s sometimes effective to simulate this behaviour 
using a kind of “bounce” easing curve: 
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Finally, we sometimes combine easing curves to 
obtain different effects at the start and end of a 
motion. This would correspond to gluing together the 
left half of one curve with the right half of another.
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