
CS 116x Winter 2015
Craig S. Kaplan

Module 04
Physics and Animation

Topics

• Newton’s first law: moving things at constant speed
(in one dimension)

• Newton’s second law: applying forces
• Newton’s third law: handling collisions
• Two-dimensional physics
• Using a physical simulation library
• Animation principles and easing

Readings

• Getting Started, Pages 91–96
• Imaginary Institute Tech Note 04, up to but not

including “Using the Curves”
• Nature of Code, Chapters 1 and 2 (Chapter 5 is

relevant too, but we’ll use a different library)

d
Introduction

Physics? Haven’t we suffered enough?

A basic intuition for natural (i.e., physically plausible)
motion is extremely useful in many digital design
contexts. As computation becomes cheaper, and
we’re able to pack more visually appealing effects into
apps and operating systems, we’re seeing more visual
effects that could be interpreted as “physical”. Here
are a few examples:

• In a lot of touch-based interfaces (like mobile
phones), scrolling doesn’t stop dead at the end of a

http://imaginary-institute.com/resources/TechNote04/TechNote04.html
http://natureofcode.com/book/chapter-5-physics-libraries/

document. Instead, you’re able to “overshoot” the
end of the document slightly. When you let go, the
document “bounces back” to its end position as if
on a spring. Touchpad scrolling is similar on many
laptops.

• When you launch an application from the OSX Dock,
or when a notification appears, the application’s icon
appears to bounce up and down in the dock in a
physically plausible way.

• Websites play lots of CSS tricks to embed simple
physics into browsing. For example, when you
expand a tweet or the comments of a Google Plus
post, the expansion starts slow, speeds up, and then
slows down again when it’s near completion. Here’s
a simple example.

• Many popular games rely directly on simple models
of physics. In 2D, the most famous example is Angry
Birds.

How can we explain the seeming enthusiasm for
physical systems in games and user interface? There’s
certainly no need for it—it’s just as easy, if not easier,
to simulate motion on the screen that violates the
laws of physics (teleportation, for starters).

Every physical object in the real world must obey the
laws of physics[citation needed], and so your perception of
motion is influenced at a very deep level by what’s
physically plausible. I would argue, then, that natural
motion has greater appeal, looks more “organic”, and
is easier and faster to interpret. It also can provide us
with subtle visual cues. When an object moves with
acceleration and deceleration, we can anticipate the
extent and duration of that motion. These same
principles have formed the core of effective animation
for nearly a hundred years.

At the outset, it may seem like we’re in for a
significant challenge in simulating the laws of physics.
But there are a few reasons for hope:

• You have a lifetime of direct experience of physical
laws, whether you’re aware of it or not. Your intuition

Example sketch: Anticipation

http://tympanus.net/Tutorials/CSS3Accordion/

will be a powerful aid in knowing whether your code
is correct.

• The amount of physics we actually need is minimal.
Newton’s Three Laws of Motion account for basically
all of our everyday experience of dynamics, and we
don’t even need to obey them perfectly. No
quantum mechanics or relativity here!

• Computation (that is, simulation) takes a lot of the
math out of physics. This will become more clear as
we work our way through simple examples. If I throw
a ball in the air, it take a bit of math to figure out
how high it will go before it falls back down. But I
can just simulate the ball’s motion moment by
moment (or frame by frame in Processing), and
watch it find its peak on its own.

• Once we work through the basics of physical
simulation, we’ll simply hand the problem over to a
library that will handle it much better than we ever
could. At that point, physics becomes “just another
feature” of Processing.

d
Newton’s laws of motion

To a first approximation, the kinds of physical motion
matter in computer software are a direct expression of
Newton’s Laws of Motion. Here they are, translated
into English:

I. Every body persists in its state of being at rest
or of moving uniformly straight forward,
except insofar as it is compelled to change its
state by force impressed.

II. The alteration of motion is ever proportional
to the motive force impress'd; and is made in
the direction of the right line in which that
force is impress'd.

III. To every action there is always opposed an
equal reaction: or the mutual actions of two
bodies upon each other are always equal, and
directed to contrary parts.

The most important thing
Newton left out is relativity,
which Einstein proposed in the
early 1900s. Einstein’s
equations really do make
Newton’s wrong. But the
amount of error is so tiny, and
so irrelevant in everyday life,
that we can ignore it
completely except in very
special circumstances.

http://blogs.discovermagazine.com/crux/2014/08/29/like-gps-thank-relativity/
http://blogs.discovermagazine.com/crux/2014/08/29/like-gps-thank-relativity/

Those are still pretty complicated statements. Let’s
take them one by one, simplify them, and see how
they can be modelled with programming. In our first
pass at applying these laws, we’ll work in a one-
dimensional universe: objects are constrained to move
along a line.

d
The first law

The first law is usually written “An object in motion
tends to remain in motion. An object at rest tends to
remain at rest.” Or, more succinctly, “Keep doing what
you’re doing”.

Simulating an object at rest is easy: keep drawing it in
the same location every frame. What about an object
in motion? Let’s assume, as Newton did for this law,
that there are no forces that act on the object (no
gravity, no friction, no wind, no built-in engine, etc.).
This object will experience uniform motion: it will
move equal distances in equal amounts of time. If we
choose a unit of distance (inches, metres, furlongs)
and a unit of time (seconds, hours, fortnights), we can
say that the object is moving at a constant speed:
some fixed number of distance units per time unit.

For simplicity, in Processing I will measure distance in
pixels and time in frames (assuming my sketch runs at
a roughly constant frame rate). I might then reckon
speed in pixels per frame. In that case, how does an
object’s position change every time I draw a frame?

Assuming a constant frame rate
can be dangerous. If the scene
gets very complex, or the
computer slows down, or
internet bandwidth drops out in
a multiplayer game, you’d like
for the simulation not to lose
track of time. For that, you
could switch to a more complex
implicit method. Instead of
looking at the current frame
number, use the current time
(via the millis() function in
Processing) to decide where to
put everything. That’s too tricky
for this course, especially when
we start to take forces into
account.

We can generalize from this example to a principle for
physical simulation: at every step, use speeds to
update positions. In light of this approach, it’s also
clear that “at rest” is just a special case of “in motion”,
in which we have speed == 0.0.

d
The second law

As far as I know, Newton’s second law doesn’t really
have an informal statement in English. Instead, it’s
usually expressed as an equation, one of the most
important in all of physics: F=ma. That is, force is the
product of mass and acceleration.

In practice, it might be better to divide both sides by
m, ending up with a=F/m. Written this way, the
equation tells us that if a force is applied to an object,
the force produces acceleration. The amount of

float position = 0;
float speed = 3.77;

void setup()
{
 size(800, 100);
}

void step()
{
 position = ???
}

void draw()
{
 // Run the physical simulation for
 // one step
 step();

 // Draw the world
 background(80);
 ellipse(position, 50, 50, 50);
}

Example sketch: FirstLaw

acceleration depends on the object’s mass. The same
force will produce less acceleration when applied to a
heavy object than to a light object (you can kick a
soccer ball farther than you can kick a bowling ball).

For now, let’s ignore mass. We’re only dealing with
one object, and it turns out that an object’s mass
becomes much more important when it interacts (i.e.,
collides) with other objects. For now, then, we’ll say
that force determines acceleration directly. Let’s look
at some simple examples of how that works out in
code.

Gravity

We’ll start with a force we’re all familiar with, and that
few humans have escaped: gravity. Every bit of stuff in
the universe pulls on every other bit with a tiny
amount of gravitational force, but we’re only
interested in the simplest example: the earth’s
gravitational force on things near its surface.

The real equations that govern your gravitational
relationship to the earth aren’t worth writing down
here. If we did write them down, we would quickly
discover two important facts:

1. Your acceleration due to gravity doesn’t depend
on your mass. That is, a feather and a bowling ball
will fall at the same rate.

2. The earth is so big, and you are so small, that as
long as your altitude stays roughly constant, we
can pretend you experience a constant force.

Putting that together, we arrive at a bit of physics that
you may remember from high school: everything
accelerates towards the earth at 9.8 m/s2.

What’s that in pixels per frame squared? That is, how
do I convert distances and times to the correct scale
for a Processing sketch? There’s no one right answer
to that question. If I draw a sketch that shows a circle
dropping to the bottom of the window, I would
choose a different acceleration if the circle is a
meteorite crashing to the ground versus a ball bearing
dropping onto a table. The best advice is to try a few

values and decide what looks best for your
application.

How do we actually incorporate acceleration into a
Processing sketch? Acceleration is nothing more than
the rate at which speed changes. Recalling from the
First Law that speed is the rate at which position
changes, this suggests that we perform a similar
update. Thus we arrive at a second principle for
physical simulation: at every step, use accelerations to
update speeds. This kind of step-by-step update turns
out to be very easy to express in code.

This code is really a general model for objects that
experience any kind of constant acceleration. Gravity
is just the most obvious kind.

float position = 0;
float speed = 0;
float accel = 0.2;

void setup()
{
 size(100, 600);
}

void step()
{
 // Update speed using acceleration
 speed = ???
 // Update position using speed
 position = ???
}

void draw()
{
 // Run the physical simulation for
 // one step
 step();

 // Draw the world
 background(80);
 ellipse(50, position, 50, 50);
}

Example sketch: SecondLaw

Sliding friction

A hockey puck sliding on ice will eventually slow down
(i.e., decelerate) and stop. It experiences friction with
the ice surface—in every small moment of time, the
puck loses some of its speed, as a bit of its energy is
turned into heat.

The low-level mechanism of friction is complex. For
our purposes, what matters is that friction produces
deceleration, and that the amount of deceleration is
proportional to the object’s current speed. We
therefore model sliding friction using a kind of
damping factor.

float position = 0;
float speed = 10.0;

// Proportion of speed lost
float damping = 0.02;

void setup()
{
 size(600, 100);
}

void step()
{
 // Lose some speed due to friction
 speed = ???
 // Update position using speed
 position = ???
}

void draw()
{
 // Run the physical simulation for
 // one step
 step();

 // Draw the world
 background(80);
 ellipse(position, 50, 50, 50);
}

Example sketch: SlidingFriction

Sliding friction becomes even more complicated as an
object gets very close to stopping. It would probably
be best to include some code of the form “when the
speed goes below a minimum threshold, set it to
zero”. (Exercise: do it!)

Springs

We use a simple model for an idealized spring, which
captures a lot of the high-level behaviours of springs
in the real world. A spring has a “rest length”: the
length it wants to have. If you stretch it or squeeze it
to some other length, it exerts a force to try to get
back to its rest length. The force is proportional to
how far the spring is from its rest length. (If you’ve
ever tried a “bungee run” at a carnival, you know that
each step is harder than one before it.) This simplified
model is called Hooke’s Law, and is usually written in
the form F = -kx. The constant k is a physical property
of the spring called its stiffness. Remembering that
we’re still ignoring mass, we can translate this law
directly into a new simulation.

This spring never loses energy. It will oscillate back
and forth forever, which looks unrealistic. We can
model the spring slowly losing energy using the same
damping calculation we used in the case of sliding
friction.

float position = 800;
float speed = 0.0;

float rest_length = 400.0;
float stiffness = 0.003;

void setup()
{
 size(800, 100);
}

void step()
{
 float disp = position - rest_length;
 speed = ???
 position = ???
}

void draw()
{
 // Run the physical simulation for
 // one step
 step();

 // Draw the world
 background(80);
 ellipse(position, 50, 50, 50);
}

Example sketch: Spring

Example sketch: DampedSpring

d
The third law

Newton’s third law is apparently about “the mutual
actions of two bodies upon each other”. In most
simple cases, that refers to collisions.

Modelling collisions is quite complicated. Even the
collision of two circles in 2D can be hard to wrap your
head around (if the game of Pool is any indication).
Plus, to model collisions accurately we’d also need to
start taking the masses of objects into account. We’re
not going to try to implement that much complexity
ourselves. But let’s have a look at one simple type of
collision that we can simulate relatively easily: we’ll
simulate a ball that bounces off the bottom of the
screen.

When the ball meets the virtual floor, Newton’s law
tells us that the ball imparts a force upon the floor,
and the floor imparts an opposite force upon the ball.
In theory, we’d have to simulate the floor accelerating
downward away from the ball as a result! In practice,
we effectively assume that the floor has infinite mass,
so that it can never be made to move. As a result, the
floor transfers all of the ball’s energy back into it, and
the ball leaves with its speed reversed.

As with springs, we usually factor in a damping factor
so that at each bounce, the ball loses some of its
energy.

In summary, there are five main steps involved in
running a physics simulation of this kind:

float position = 0;
float speed = 0;
float accel = 0.4;

void setup()
{
 size(100, 600);
}

void step()
{
 speed = ???
 position = ???

 if(position+25 > height) {
 position = ???
 speed = ???
 }
}

void draw()
{
 // Run the physical simulation for
 // one step
 step();

 // Draw the world
 background(80);
 ellipse(50, position, 50, 50);
}

This code doesn’t quite work:
the ball won’t return exactly to
its original height. The main
problem is that we’re not
detecting the exact moment of
collision. There are a few ways
to correct that, but they’re
fussy and not worth exploring
here. In any collision code you
implement, it’s fine to use the
simple speed-reversing
method. If you want to see a
fuller solution, look at the
ThirdLawAccurate sketch.

1. Calculate all the forces on each object.
2. Use the forces to update the speeds.
3. Use the speeds to update the positions.
4. Process any collisions.
5. Draw the current state of the world.

Example sketch: ThirdLaw

There isn’t necessarily one correct order in which to
run these steps (theoretically, if the time difference
between frames is small enough, it probably won’t
matter).

d
Two-dimensional dynamics

Obviously, there’s only so much you can do that’s
visually interesting in one dimension. For the purposes
of creating richer sketches, we should graduate to (at
least) two dimensions.

In two dimensions, the position of an object (say, a
circle) will be given by two numbers (px,py). It turns
out that a similar pairing of x and y coordinates
suffices to capture speed and acceleration too, with
one small change: we usually speak of velocity rather
than speed. Velocity is a vector, an arrow of some
length that points in some direction. In two
dimensions and higher, speed is the length of this
arrow. Acceleration also becomes a vector.

We can actually get pretty far with just this simple
reformulation. In fact, you can almost squint and
ignore the vectors, and just pretend that you’re
running two separate simulations, one in x and one in
y. With that philosophy, we might produce this revised
sketch to demonstrate the First Law:

Similarly, with the Second Law we can treat a force in
terms of independent components that affect an
object’s x and y velocity components separately. For
example, a thrown projectile will have its vertical
position and velocity affected by gravity, while its
horizontal speed will stay constant.

// Position
float px = 0;
float py = 0;
// Velocity
float vx = 4.0;
float vy = 5.3;

void setup()
{
 size(500, 500);
}

void step()
{
 px = ???
 py = ???
}

void draw()
{
 // Run the physical simulation for
 // one step
 step();

 // Draw the world
 background(80);
 ellipse(px, py, 50, 50);
}

Example sketch: FirstLaw2D

In a simple example like this one, it’s also not too hard
to implement collisions off all four walls of the sketch.
(Exercise: do it!)

Things start to get more complicated when we
attempt to deal with the Third Law, and handle 2D
collisions. There are two main problems:

1. Calculating the effect of a general collision on the
velocities of two bodies involves a lot of messy

// position
float px = 50;
float py = 550;
// velocity
float vx = 2.0;
float vy = -15.0;
// constant acceleration
float ax = 0.0;
float ay = 0.3;

void setup()
{
 size(400, 600);
}

void step()
{
 // Update velocity using acceleration
 vx = ???
 vy = ???
 // Update position using velocity
 px = ???
 py = ???
}

void draw()
{
 // Run the physical simulation for
 // one step
 step();

 // Draw the world
 background(80);
 ellipse(px, py, 50, 50);
}

Example sketch: SecondLaw2D

geometry. Even a ball bouncing off of a wall that
isn’t horizontal or vertical uses some tricky math.
Two general moving objects is even harder, but
that’s well beyond the scope of this course!

2. In one dimension, an object can collide only with
the objects immediately to its right and its left. In
two dimensions, there are many more ways that
objects can collide. If you’ve got a bunch of
objects floating around in your simulation, in
theory you can test every pair of objects every
frame for collisions. But that requires a lot of
computation, and the amount goes up
disproportionately with the number of objects (a
computer scientist would call this a “quadratic time
algorithm”). There are some very clever algorithms
and data structures for organizing a scene to
check for collisions efficiently, but that’s well
beyond the scope of this course!

And beyond that, there’s a completely separate mode
of rigid motion that we haven’t talked about at all yet:
rotation. Objects can spin in 2D. Spinning has its own
versions of velocity and acceleration, and interacts
with the three laws as we originally wrote them (for
example, a collision can set a object spinning). It’s safe
to say, then, that we’ve reached the end of what can
comfortably be accomplished by coding physics from
first principles. It’s time to bring out the big guns.

d
Physics engines

A physics engine is a library that keeps track of all the
positions, velocities, accelerations, collisions, friction,
and other properties of a simulated world, allowing
you to inject a bunch of objects and then run the
simulation step by step. There are many physics
engines available to programmers. They are a big deal
in the entertainment industry. Many 2D and 3D games
rely on realistic physics, and many movies simulate
physics as an essential part of visual effects
sequences. In fact, in 2015 the authors of the open-
source 3D physics engine Bullet Physics won a

HCI researchers have also
experimented with physics
engines in desktop interfaces.
Be sure to watch the famous
“BumpTop” demo video.

https://www.youtube.com/watch?v=M0ODskdEPnQ
https://www.youtube.com/watch?v=M0ODskdEPnQ

technical academy award for their contribution to
filmmaking.

There are several physics engines available in
Processing. We’re going to use one called Fisica.
Fisica is a Processing “wrapper” around the Java
library JBox2D. JBox2D is itself a Java translation of
an earlier C++ library Box2D, a very popular 2D
physics library perhaps most famously used in Angry
Birds.

At this point, the task is to learn the coding practices
of yet another library. First, make sure you have Fisica
installed (via “Add Library…” in Processing). Now you
can follow the recipe to add physical simulation to
your sketch. The process will look a bit like what we
did for ControlP5. First, tell Processing that you want
to use Fisica in this sketch:

Next, declare a global variable that will represent the
entire physics engine. The relevant type is FWorld.

In the setup() function, we can now initialize the
world and start adding objects to it. In ControlP5, we
did so by sending “add” messages to a global object
that I called cp5. With Fisica we’ll create new objects
directly using the magic word new in Processing.
Fisica objects are all variations on the type FBody. We
can then ask the world object to take ownership of
the new body.

import fisica.*;

FWorld world;

http://bulletphysics.org/wordpress/?p=427
http://www.ricardmarxer.com/fisica/

So far this sketch doesn’t do anything. We still need to
add a draw() function. When using the Fisica library,
the draw() function will usually do two things: run the
simulation for one time step, and then draw the world:

Note that we never draw anything ourselves—we’ve
basically handed control of the world over to Fisica.
The library needs to know about all the objects in the
world in order to track their dynamical properties, so
we may as well allow the library to draw the world for
us too.

As with ControlP5 Controllers, you can set a bunch of
properties on Fisica bodies: physical properties like
position and velocity, and also rendering properties
like strokes and fills:

void setup() {
 size(400, 400);

 Fisica.init(this);

 world = new FWorld();

 FBody circle = new FCircle(50);
 circle.setPosition(width/2, 25);
 world.add(circle);
}

void draw() {
 background(255);

 world.step();
 world.draw();
}

FBody circle = new FCircle(50);
circle.setPosition(width/2, 100);
circle.setVelocity(0, -200);
circle.setFillColor(#406080);
circle.setNoStroke();

Plus, there are some handy convenience functions for
doing things like adding bounding walls to the sketch:

There are a few other standard objects that can be
added to a Fisica world, most obviously boxes (FBox)
and polygons (FPoly). And there are many properties
that can be set both on bodies and on the world itself,
to control forces like gravity, friction, restitution
(energy recovery after a collision), and damping.

Fisica assumes by default that objects you create are
subject to direct manipulation (you can pick them up
and move them manually, temporarily “overriding” the
laws of physics. Of course, you can disable that for
whichever objects you want. Conversely, you can
check manually whether a given point in the sketch is
inside any objects in the world, which allows you to
attach things like click events to bodies.

The best way to learn about these features is to
browse the online documentation for Fisica and to
look at many examples. The library itself comes with a
set of standard examples; you can click on the icons
on the Fisica web page to see the sketches in action
and look at the source code for each one (a good
starting point is “Buttons”). There are a few additional
Fisica-related sketches at openprocessing.org. Fisica
includes features we can’t spend time on, like joints,
chains, and even some blobby fluid objects. You can
also track collisions and decide what to do when they
happen. It’s possible to create very elaborate (and
very satisfying) sketches using this kind of physical
simulation, up to and including programs with the
complexity of Angry Birds. I encourage you to play
around to discover more.

// Add a box around the world.
world.setEdges();

// But remove all but the bottom edge.
world.remove(world.left);
world.remove(world.right);
world.remove(world.top);

I’m probably lying—most likely,
the demos won’t run in your
browser, because it’s becoming
increasingly difficult to launch
Java applets in web browsers. If
the demos don’t work, click on
“source code” and copy the
demo’s source code into a new
Processing sketch. Most of
them will work that way. You
should also have the example
sketches in the “libraries” sub-
folder of your Processing
sketchbook, though that might
be hard to find.

http://www.ricardmarxer.com/fisica/reference/index.html
http://www.openprocessing.org/collection/1373
http://openprocessing.org

d
Animation principles and digital design

Old animations (from the 1920s and 1930s) look pretty
strange to our eyes. You can find lots of examples on
YouTube—look for cartoons by Max Fleischer and Ub
Iwerks, for example. While animators had figured out
the basic illusion of motion, they hadn’t yet developed
the aesthetic conventions that make animation look
natural and appealing.

It was Walt Disney (i.e., the actual person) who first
codified principles of effective animation in the 1930s.
A good reference for the ideas that came out of that
studio is Disney Animation: The Illusion of Life by
Thomas and Johnson (AKA “Frank and Ollie”).

Computer animation went through a similar coming-
of-age. In this case it was John Lasseter of Pixar who
first discussed the use of Disney principles in
computer animation in his paper “Principles of
traditional animation applied to 3D computer
animation”. The effect of his philosophy was apparent
in early Pixar shorts like Luxo, Jr.

The standard principles of effective computer
animation are a beautiful intersection between
computation and visual aesthetics. We don’t have
time to cover them all, but let me single out a few
important ones.

Squash and Stretch

An object should deform to suggest the character of
its motion. If we are animating a baseball being
pitched and then hit, we might stretch the ball as it’s
flying through the air to emphasize its speed, and
squash it at the moment it hits the bat to show its
reaction to the bat’s force. We exaggerate these
effects to make them visible, but the result is
appealing.

Squash and stretch are useful to know about and to
watch out for, but they’re fairly difficult to implement

On the other hand, I’m really
intrigued by Cuphead, a
forthcoming videogame with a
visual style inspired by
Fleischer.

Off the top of my head, I’d say
that stretch simulates the
motion blur of a fast-moving
object. Squash is real: a hit
baseball really does deform
briefly, as the back of the ball
keeps moving even as the front
is stopped by the bat.

http://cupheadgame.com/
https://classes.soe.ucsc.edu/cmps160/Spring05/p35-lasseter.pdf
https://www.youtube.com/watch?v=QFlEIybC7rU
http://cupheadgame.com/

effectively: deforming objects is much harder than
moving them around. I’ve created a hacked-together
demonstration, but let’s not stop to discuss how it
works.

Slow in, slow out

Remember Processing’s lerp() function for linear
interpolation? When trying to animate the motion of
an object from A to B, it’s tempting to use
straightforward linear interpolation at all intermediate
positions. Assume that motion is controlled by a
simple float variable t that ranges from 0 to 1.

But that’s not how objects move in the real world. An
object must necessarily accelerate out of a resting
position—it can’t just start moving instantaneously.
Similarly, objects don’t stop dead when they reach
their destinations: they must decelerate to a stop.
Animators refer to this phenomenon as “slow in, slow
out”: when drawing intermediate frames in the
animation of a motion, you don’t space the positions
of the object evenly for even differences in time. This
is an animator’s intuitive way of representing
acceleration and deceleration. Slow in and out can
make motion look more natural; and as I said at the
start of these notes, it also allows us to form intuitive
judgments about the character and endpoint of a
physical motion.

void draw()
{
 // Assume that you're moving a circle
 // from (startX,endX) to (startY,endY),
 // and t is a parameter value between
 // 0 and 1.
 ellipse(
 lerp(startX, endX, t),
 lerp(startY, endY, t),
 50, 50);
 t = t + 0.01;
}

Example sketch: SquashStretch

When programmers transform the simple linear
interpolation between two values of a variable
(whether it’s a point’s x position, an object’s size,
transparency, etc.), they refer to the process as easing.
There are many popular easing curves that achieve
different aesthetic effects. Imagine drawing a graph
showing time on the horizontal axis and an object’s
position on the vertical. Here’s what simple linear
interpolation looks like:

On the other hand, a slow in, slow out curve might
look more like this:

See how the curve is “horizontal” at the start and end,
giving it an overall S shape? That’s the defining

Time

P
os

it
io
n

t=0 t=1

Time

P
os

it
io
n

t=0 t=1

characteristic of slow in, slow out. It guarantees that
the object will appear to accelerate and decelerate.

It isn’t necessarily obvious how to define curves that
happen to have that shape. We won’t try to do that in
this course but we will at least try to use them. The
trick is to “warp time”: pass the value t defined above
through the function that defines the easing curve
before lerping in the usual way. In full generality, we
might end up with code like this:

The most common form of easing is “cubic
easing” (for reasons you don’t have to care about):

There are other easing curves, but I won’t discuss their
mathematical properties here. If you’re interested, I’ve
included a sample sketch that demonstrates some of
them. You can also see a lot more of them in action at
easings.net (a demonstration of many easing curves in
Javascript).

float ease(float t)
{
 // Transform t through some mathematical
 // function and return the new value.
 return ???
}

void draw()
{
 float et = ease(t);

 ellipse(
 lerp(startX, endX, et),
 lerp(startY, endY, et),
 50, 50);
 t = t + 0.01;
}

float ease(float t)
{
 return -2*t*t*t + 3*t*t;
}

Example sketch: Easing

http://easings.net

Anticipation and follow-through

Pure acceleration and deceleration aren’t the only
possible ways to begin and end a motion. In fact,
they’re a bit artificial, because objects rarely exhibit
such perfect adherence to the laws of physics. Giving
motions a bit more character can also help
communicate the nature of a motion even more
clearly than slow in, slow out.

For example, living beings usually “anticipate” motion.
There’s some kind of preparation or wind-up. Even
with straight-line motion, a bit of anticipation can add
a lot, and the initial backwards jerk can alert the user
that something interesting is about to happen:

At the other end of the curve, it’s hard for living
beings to hit a target exactly. There’s often some kind
of overshooting, followed by some kind of correction.
It’s sometimes effective to simulate this behaviour
using a kind of “bounce” easing curve:

Time

P
os

it
io
n

t=0 t=1

Finally, we sometimes combine easing curves to
obtain different effects at the start and end of a
motion. This would correspond to gluing together the
left half of one curve with the right half of another.

P
os

it
io
n

