
CS 116x Winter 2015
Craig S. Kaplan

Module 06
Procedural Content Generation
Topics

• Recursion as an extension of hierarchical modelling
• Simple fractals
• The use of randomness as a design tool, controlling

randomness in code
• Emergent design from simple rules

Readings

• Getting Started, Pages 97–99
• Learning Processing, Sections 13.3–13.6, 13.10
• Nature of Code, Chapters 7, 8

d
Introduction

In this module, I want to collect together a range of
topics that demonstrate the usefulness of
programming to create designs that would be difficult
or impossible to draw by hand. This is one place
where the power of computation really shines
through: the computer becomes an artistic medium
with its own distinct aesthetic.

d
Recursion

Recursion is an incredibly powerful tool across much
of mathematics and computer science, at both the
conceptual and practical levels. All too often, it also
proves to be a stumbling block for people new to

The ultimate trip into the
twisted world of recursion is
the legendary mind-bending
book Gödel, Escher, Bach: an
Eternal Golden Braid by
Douglas Hofstadter.

http://natureofcode.com/book/chapter-7-cellular-automata/
http://natureofcode.com/book/chapter-8-fractals/

programming. We won’t spend a long time studying
recursion in this course (unlike in CS 115 and CS 135,
where recursion is everywhere). My main goal is to
communicate some intuition for what recursion is and
why it’s so useful, particularly in the kinds of visual
programming tasks we pursue. Of course, you will also
practice writing recursive code in the lab and on the
assignment.

Let’s begin at an intuitive level, by using a drawing
program called Recursive Drawing
(recursivedrawing.com). This is a bare-bones tool
lacking in many basic features, but there’s one special
thing that it does very well, as we’ll see.

It doesn’t take much experimentation to realize that
there’s an immediate connection between this simple
drawing interface and the kind of hierarchical
modelling we explored in the previous module. We
can treat each of the shapes in the “library” (the left
sidebar) as a kind of “function” in a hypothetical
programming language. When you drag shape A from
the library into a some new design B, you are
effectively setting up a geometric context and calling
the A function as part of writing a B function. For
example, the composition above contains three cars,
each of which relies on a previously defined “car”
function. If we modify the underlying car, all three
instances are immediately affected.

http://recursivedrawing.com

So far, that’s just a demonstration of hierarchical
modelling as in Module 05. But this piece of software
has a remarkable superpower: you can drag a shape
out of the library onto itself! What does that even
mean? Well, try it: create a new shape and drag a
circle or square onto it. Now drag another copy of the
shape you’re creating onto the main canvas. Try
adjusting the position, scale and rotation of the main
shape and of any copies that also appear on the
canvas (it’s safer to scale down, not up). Now step
back from the computer and mediate on what you’ve
seen. Can you tell yourself a convincing story that
accounts for this behaviour? This tool demonstrates
the essence of recursion.

If you’re comfortable with the idea of recursion as
embodied here, the next step is to ask how the same
ideas might find their way into code. If each shape in
the Recursive Drawing library is equivalent to a
function, then a shape that incorporates a copy of
itself ought to correspond to a function that calls
itself. And that’s exactly what we usually mean when
we speak of programming a recursive function:

(More generally, a recursive function might be part of
a longer chain, e.g., A() calls B() and B() calls A(), or
A() calls B() which calls C() which calls A(), etc. But
we’ll avoid these more convoluted forms of recursion
in this course.

That seems simple enough to express in code. Let’s
try something like this as part of a longer Processing
sketch.

A recursive function is a function that calls itself.

This function certainly seems to have the right
structure, but unfortunately it’s fatally flawed. The
problem is that there’s nothing to tell the function
when to stop. Processing will attempt to compose a
drawing from an infinite sequence of ever smaller
drawings, and this infinite regress will eventually
consume all of some resource in the computer,
crashing the sketch.

We avoid infinite regress with some sort of stopping
condition, usually called a base case. Every recursive
function must have a base case, a way to execute the
body of the function without ever making a recursive
call. For the makeDrawing() function above, the
easiest way to add a base case is to keep track of the
level of the recursion: how deep are we in a nested
sequence of recursive calls? Typically, we count down:

• The first time we call the recursive function we pass
in the total number of levels we want to use.

• Every time we make a recursive call, we pass in the
next smaller number of levels.

• The function checks if the current level is zero, and if
so it does something trivial.

We might then arrive at code like this:

void makeDrawing()
{
 ellipse(0, 0, 150, 150);

 pushMatrix();
 translate(130, -20);
 scale(0.6);
 makeDrawing();
 popMatrix();
}

In practice, this program will
crash very quickly because
Processing permits a relatively
small number (32) of nested
calls to pushMatrix().

Note that levs can’t be a global variable, it must be
an argument to the function. Every call to the function
now operates “at level n” for some n; a level-n drawing
is made out of an ellipse, combined with a level-(n-1)
drawing. Think of it as a collapsed form of this much
more verbose code:

void makeDrawing(int levs)
{
 ellipse(0, 0, 150, 150);

 if(levs > 0) {
 pushMatrix();
 translate(130, -20);
 scale(0.6);
 makeDrawing(levs - 1);
 popMatrix();
 }
}

The idea that the level goes down by one in every
recursive call represents an important principle: the
recursive call must get a little bit closer to the base
case (because if it doesn’t, the program will never

void makeDrawing_0()
{
 ellipse(0, 0, 150, 150);
}

void makeDrawing_1()
{
 ellipse(0, 0, 150, 150);
 pushMatrix();
 translate(130, -20);
 scale(0.6);
 makeDrawing_0();
 popMatrix();
}

void makeDrawing_2()
{
 ellipse(0, 0, 150, 150);
 pushMatrix();
 translate(130, -20);
 scale(0.6);
 makeDrawing_1();
 popMatrix();
}

void makeDrawing_3()
{
 ellipse(0, 0, 150, 150);
 pushMatrix();
 translate(130, -20);
 scale(0.6);
 makeDrawing_2();
 popMatrix();
}

void makeDrawing_4()
{
 ellipse(0, 0, 150, 150);
 pushMatrix();
 translate(130, -20);
 scale(0.6);
 makeDrawing_3();
 popMatrix();
}

// ...and so on...

finish). Always make sure your recursive calls are
“making progress”. Another way to structure this
program would be to keep track of how large the
circles will be on the screen, and stop the recursion
when they get too small.

Putting together what we’ve learned, we arrive at
these general guidelines for writing recursive
functions:

Computer scientists love to write code that draws
self-similar structures like these fractals. Some simple
examples are the Sierpinski Carpet, Sierpinski Triangle,
and the Koch Curve. (Images below from Wikipedia.)

In a recursive function…

• The function body will contain at least one call
to the function itself.

• The recursive calls will be to “simpler”
instances of the problem.

• There will be a base case in which no further
recursion happens.

There are numerous other examples of abstract
mathematical designs like these. They can sometimes
be seen intruding into popular culture, though they
tend to remain within the province of admirers of
overt mathematical form. They might occasionally
provide an interesting basis for more freeform design,
though.

d
Randomness

Obviously we’ve already encountered randomness
through the built-in random() function, and used it
many times in this course. But in the context of this
module, we should explore the nature of this
randomness in a bit more detail, and also consider
alternatives.

Let’s begin with a classic example of random
computer-based design, in the form of a short

program written on the Commodore 64 in the early
1980s:

This program loops forever, randomly printing forward
and backward slashes. The result looks a bit like a
random maze, though it isn’t truly a maze (there are
loops and closed-off passages). It may seem
innocuous, but this program is the subject of an entire
book on computer art, written by a group that
includes Casey Reas, one of the creators of
Processing.

It isn’t too hard to translate this into a Processing
sketch, though it’s better to use more than one line of
code.

Notice that we get a different design every time we
run the sketch. That’s good: it means that our random
numbers keep changing, like we would hope.

But that lack of repetition can also be a liability. What
if we want to redraw the frame in the same (or almost
the same) way? If we do so naively, we get different

10 PRINT CHR$(205.5+RND(1)); : GOTO 10 Don’t bother trying to run this
program, unless you’re using
the C64 BASIC programming
language.

void setup()
{
 size(600, 400);
 strokeCap(ROUND);
 strokeWeight(7);
 stroke(0);
 noFill();

 background(255);

 for(int y = 0; y < height; y += 20) {
 for(int x = 0; x < width; x += 20) {
 if(random(1) <= 0.5) {
 line(x, y, x + 20, y + 20);
 } else {
 line(x + 20, y, x, y + 20);
 }
 }
 }
}

http://10print.org/

random decisions, and the pattern changes
chaotically.

One way to resolve this chaos is to do something
similar to the Blizzard question in Assignment 05. We
compute an array of random numbers up front, and
refer back to those numbers every time we draw.
(Exercise: do it!) But there’s a better way, one that
doesn’t rely on storing any explicit random numbers.
The built-in function randomSeed() takes an integer
as input and resets Processing’s random number
generator based on that “seed”. For any given seed,
any sequence of calls to random() will return the
same sequence of answers. So we can fix the sketch
above simply by forcing the same seed at the start of
draw().

Why does this work? It’s a mathematical fact that may
surprise others. Most random number generators
produce numbers that aren’t “random” at all, merely

void setup()
{
 size(600, 400);
 strokeCap(ROUND);
 strokeWeight(7);
 stroke(0);
 noFill();
}

void draw()
{
 background(255);

 for(int y = 0; y < height; y += 20) {
 for(int x = 0; x < width; x += 20) {
 if(random(1) <= 0.5) {
 line(x, y, x + 20, y + 20);
 } else {
 line(x + 20, y, x, y + 20);
 }
 }
 }
}

Example sketch: TenPrint

unpredictable. They’re usually called pseudorandom.
Pseudorandom numbers are perfectly fine as a source
of chaos for art and design purposes, but it’s very
dangerous to assume they’re truly random.
Cryptographic systems based on pseudorandom
numbers are easier to hack. Gambling machines that
use pseudorandom numbers without care can be
beaten. When real randomness matters, there are
better sources and better algorithms, though it’s
always a hard problem.

So far this sketch works fine, but what if we want to
scroll the random maze? We can restart the sequence
of random numbers, but we can’t translate it or
otherwise extend it to cover new grid cells as they
enter the screen. What we really need is some way to
conceptually “attach” random numbers to every point
in an ambient field in space. That would let us develop
a theoretically infinite grid of slashes and backslashes,
and simply show a small fragment of it in every frame.

That’s one possible use of the built-in noise()
function. This function can be passed one, two, or
three floating-point numbers as parameters. In one
dimension, the noise function produces an
unpredictable number for every input. That number
never changes—it’s permanently associated with the
input number.

By default, the noise() function has interesting
statistical properties. At very fine scales (i.e., when
you zoom in on it), it changes slowly and looks very
smooth. As you zoom out is gets more chaotic, but at
some point the function runs out of randomness and
starts repeating. Still, there’s a wide useful range in
which you can use this function.

http://www.blackjackforumonline.com/content/how_to_beat_keno.htm

For the random 10 PRINT sketches, we can use the
two-parameter version of the noise() function to
assign random orientations to every line in the plane,
whether or not we actually draw it. Then, we can even
add direct manipulation and use the mouse to explore
a conceptually infinite random pattern.

float m = 0.01; // We’ll vary this

void setup()
{
 size(600, 200);
 noFill();
 background(255);
 beginShape();
 for(int idx = 0; idx < width; ++idx) {
 vertex(idx, noise(idx*m)*200);
 }
 endShape();
}

m = 0.01

m = 0.1

m = 1

m = 50000

d
Combining fractals and randomness

Let’s end by exploring two examples that combine
fractals and randomness.

Diminishing circles

It’s easy to write a Processing sketch that places a set
of circles completely at random. Things get more
interesting when ask that the circles not intersect. We
need to maintain explicit arrays for the centres and
radii of the circles, and use code to check whether a
new circle intersects any existing one before drawing
it.

Example sketch: TenPrintNoise

Example sketch: TenPrintManip

Example sketch: Truchet

Example sketch: QBert

We can make a few additional extensions to this
sketch (not shown here) to gradually diminish the
radius of the circles we’re trying to add. Circles never
fill up the plane completely, so as the radius goes
down we always eventually find places to fit new
circles.

float[] xs;
float[] ys;

boolean checkIntersection(
 float x1, float y1, float x2, float y2)
{
 float d = dist(x1, y1, x2, y2);
 return d <= 80;
}

boolean maybeAddCircle(float x, float y)
{
 for(int idx = 0; idx < xs.length; ++idx) {
 if(checkIntersection(
 x, y, xs[idx], ys[idx])) {
 return false;
 }
 }

 xs = append(xs, x);
 ys = append(ys, y);
 return true;
}

void setup()
{
 size(500, 500);
 stroke(0);
 colorMode(HSB, 100);

 xs = new float[0];
 ys = new float[0];
}

void draw()
{
 float x = random(width);
 float y = random(height);
 if(maybeAddCircle(x, y)) {
 ellipse(x, y, 80, 80);
 }
}

This sketch suggests a general framework for creating
fractal-like structures. We place objects wherever they
fit. If nothing fits, make the objects smaller. Repeat for
as long as desired. This technique is explored in a
paper by Dunham and Shier, and in some 2D and 3D
examples by Paul Bourke. On the more mathematical
side, fractals like the Apollonian Gasket are a kind
idealized version of this circle fractal.

Mountains

A standard technique for generating fractal mountain
ranges is called midpoint displacement. Given some
lines that make up a mountain range, we divide each
line in half and randomly move the midpoint up or
down. The amount of displacement in Y is
proportional to the distance between the line’s
endpoints in X, so that we add finer details as we work
at smaller scales. It’s easiest to use recursion to
generate a 2D fractal mountain range.

In addition to the number of levels remaining in the
recursion, each recursive call takes four float
parameters that describe the current line segment to
“mountainify”. The base case simply draws the line
segment. The recursive case computes the midpoint
of the line segment (i.e., the averages of the X and Y
coordinates). It generates a random displacement and
moves the Y coordinate of the midpoint up or down
by that distance, scaled by the width of the segment
(the difference between the X values of its endpoints)
and a global scaling factor. Then it recursive draws
two sub-mountains, one based on the left sub-
segment and one on the right sub-segment. These
could be drawn using lots of calls to line(), though a
more elegant approach is to use beginShape(),
endShape(), and vertex().

Example sketch: Foam

Example sketch: Mountains

http://archive.bridgesmathart.org/2014/bridges2014-79.pdf
http://www.paulbourke.net/texture_colour/randomtile/
http://en.wikipedia.org/wiki/Apollonian_gasket

This same technique adapts naturally to 3D, though
the recursion is more complicated because we have to
express the connectivity between every mountain
point and its neighbours in a 2D grid.

