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Module 06 
Procedural Content Generation 
Topics 

• Recursion as an extension of hierarchical modelling 
• Simple fractals 
• The use of randomness as a design tool, controlling 

randomness in code 
• Emergent design from simple rules 

Readings 

• Getting Started, Pages 97–99 
• Learning Processing, Sections 13.3–13.6, 13.10 
• Nature of Code, Chapters 7, 8 

d 
Introduction 

In this module, I want to collect together a range of 
topics that demonstrate the usefulness of 
programming to create designs that would be difficult 
or impossible to draw by hand. This is one place 
where the power of computation really shines 
through: the computer becomes an artistic medium 
with its own distinct aesthetic. 

d 
Recursion 

Recursion is an incredibly powerful tool across much 
of mathematics and computer science, at both the 
conceptual and practical levels. All too often, it also 
proves to be a stumbling block for people new to 

The ultimate trip into the 
twisted world of recursion is 
the legendary mind-bending 
book Gödel, Escher, Bach: an 
Eternal Golden Braid by 
Douglas Hofstadter.

http://natureofcode.com/book/chapter-7-cellular-automata/
http://natureofcode.com/book/chapter-8-fractals/


programming. We won’t spend a long time studying 
recursion in this course (unlike in CS 115 and CS 135, 
where recursion is everywhere). My main goal is to 
communicate some intuition for what recursion is and 
why it’s so useful, particularly in the kinds of visual 
programming tasks we pursue. Of course, you will also 
practice writing recursive code in the lab and on the 
assignment. 

Let’s begin at an intuitive level, by using a drawing 
program called Recursive Drawing 
(recursivedrawing.com). This is a bare-bones tool 
lacking in many basic features, but there’s one special 
thing that it does very well, as we’ll see. 

It doesn’t take much experimentation to realize that 
there’s an immediate connection between this simple 
drawing interface and the kind of hierarchical 
modelling we explored in the previous module. We 
can treat each of the shapes in the “library” (the left 
sidebar) as a kind of “function” in a hypothetical 
programming language. When you drag shape A from 
the library into a some new design B, you are 
effectively setting up a geometric context and calling 
the A function as part of writing a B function. For 
example, the composition above contains three cars, 
each of which relies on a previously defined “car” 
function. If we modify the underlying car, all three 
instances are immediately affected. 

http://recursivedrawing.com


So far, that’s just a demonstration of hierarchical 
modelling as in Module 05. But this piece of software 
has a remarkable superpower: you can drag a shape 
out of the library onto itself! What does that even 
mean? Well, try it: create a new shape and drag a 
circle or square onto it. Now drag another copy of the 
shape you’re creating onto the main canvas. Try 
adjusting the position, scale and rotation of the main 
shape and of any copies that also appear on the 
canvas (it’s safer to scale down, not up). Now step 
back from the computer and mediate on what you’ve 
seen. Can you tell yourself a convincing story that 
accounts for this behaviour? This tool demonstrates 
the essence of recursion. 

If you’re comfortable with the idea of recursion as 
embodied here, the next step is to ask how the same 
ideas might find their way into code. If each shape in 
the Recursive Drawing library is equivalent to a 
function, then a shape that incorporates a copy of 
itself ought to correspond to a function that calls 
itself. And that’s exactly what we usually mean when 
we speak of programming a recursive function: 

(More generally, a recursive function might be part of 
a longer chain, e.g., A() calls B() and B() calls A(), or 
A() calls B() which calls C() which calls A(), etc. But 
we’ll avoid these more convoluted forms of recursion 
in this course. 

That seems simple enough to express in code. Let’s 
try something like this as part of a longer Processing 
sketch. 

A recursive function is a function that calls itself.



This function certainly seems to have the right 
structure, but unfortunately it’s fatally flawed. The 
problem is that there’s nothing to tell the function 
when to stop. Processing will attempt to compose a 
drawing from an infinite sequence of ever smaller 
drawings, and this infinite regress will eventually 
consume all of some resource in the computer, 
crashing the sketch. 

We avoid infinite regress with some sort of stopping 
condition, usually called a base case. Every recursive 
function must have a base case, a way to execute the 
body of the function without ever making a recursive 
call. For the makeDrawing() function above, the 
easiest way to add a base case is to keep track of the 
level of the recursion: how deep are we in a nested 
sequence of recursive calls? Typically, we count down:  

• The first time we call the recursive function we pass 
in the total number of levels we want to use. 

• Every time we make a recursive call, we pass in the 
next smaller number of levels. 

• The function checks if the current level is zero, and if 
so it does something trivial. 

We might then arrive at code like this: 

void makeDrawing() 
{ 
  ellipse( 0, 0, 150, 150 ); 

  pushMatrix(); 
  translate( 130, -20 ); 
  scale( 0.6 ); 
  makeDrawing(); 
  popMatrix(); 
}

In practice, this program will 
crash very quickly because 
Processing permits a relatively 
small number (32) of nested 
calls to pushMatrix().



Note that levs can’t be a global variable, it must be 
an argument to the function. Every call to the function 
now operates “at level n” for some n; a level-n drawing 
is made out of an ellipse, combined with a level-(n-1) 
drawing. Think of it as a collapsed form of this much 
more verbose code: 

void makeDrawing( int levs ) 
{ 
  ellipse( 0, 0, 150, 150 ); 

  if( levs > 0 ) { 
    pushMatrix(); 
    translate( 130, -20 ); 
    scale( 0.6 ); 
    makeDrawing( levs - 1 ); 
    popMatrix(); 
  } 
}



The idea that the level goes down by one in every 
recursive call represents an important principle: the 
recursive call must get a little bit closer to the base 
case (because if it doesn’t, the program will never 

void makeDrawing_0() 
{ 
  ellipse( 0, 0, 150, 150 ); 
} 

void makeDrawing_1() 
{ 
  ellipse( 0, 0, 150, 150 ); 
  pushMatrix(); 
  translate( 130, -20 ); 
  scale( 0.6 ); 
  makeDrawing_0(); 
  popMatrix(); 
} 

void makeDrawing_2() 
{ 
  ellipse( 0, 0, 150, 150 ); 
  pushMatrix(); 
  translate( 130, -20 ); 
  scale( 0.6 ); 
  makeDrawing_1(); 
  popMatrix(); 
} 

void makeDrawing_3() 
{ 
  ellipse( 0, 0, 150, 150 ); 
  pushMatrix(); 
  translate( 130, -20 ); 
  scale( 0.6 ); 
  makeDrawing_2(); 
  popMatrix(); 
} 

void makeDrawing_4() 
{ 
  ellipse( 0, 0, 150, 150 ); 
  pushMatrix(); 
  translate( 130, -20 ); 
  scale( 0.6 ); 
  makeDrawing_3(); 
  popMatrix(); 
} 

// ...and so on...



finish). Always make sure your recursive calls are 
“making progress”. Another way to structure this 
program would be to keep track of how large the 
circles will be on the screen, and stop the recursion 
when they get too small. 

Putting together what we’ve learned, we arrive at 
these general guidelines for writing recursive 
functions: 

Computer scientists love to write code that draws 
self-similar structures like these fractals. Some simple 
examples are the Sierpinski Carpet, Sierpinski Triangle, 
and the Koch Curve. (Images below from Wikipedia.) 

In a recursive function… 

• The function body will contain at least one call 
to the function itself. 

• The recursive calls will be to “simpler” 
instances of the problem. 

• There will be a base case in which no further 
recursion happens.



There are numerous other examples of abstract 
mathematical designs like these. They can sometimes 
be seen intruding into popular culture, though they 
tend to remain within the province of admirers of 
overt mathematical form. They might occasionally 
provide an interesting basis for more freeform design, 
though. 

d 
Randomness 

Obviously we’ve already encountered randomness 
through the built-in random() function, and used it 
many times in this course. But in the context of this 
module, we should explore the nature of this 
randomness in a bit more detail, and also consider 
alternatives. 

Let’s begin with a classic example of random 
computer-based design, in the form of a short 



program written on the Commodore 64 in the early 
1980s: 

This program loops forever, randomly printing forward 
and backward slashes. The result looks a bit like a 
random maze, though it isn’t truly a maze (there are 
loops and closed-off passages). It may seem 
innocuous, but this program is the subject of an entire 
book on computer art, written by a group that 
includes Casey Reas, one of the creators of 
Processing. 

It isn’t too hard to translate this into a Processing 
sketch, though it’s better to use more than one line of 
code. 

Notice that we get a different design every time we 
run the sketch. That’s good: it means that our random 
numbers keep changing, like we would hope. 

But that lack of repetition can also be a liability. What 
if we want to redraw the frame in the same (or almost 
the same) way? If we do so naively, we get different 

10 PRINT CHR$(205.5+RND(1)); : GOTO 10 Don’t bother trying to run this 
program, unless you’re using 
the C64 BASIC programming 
language.

void setup() 
{ 
  size( 600, 400 ); 
  strokeCap( ROUND ); 
  strokeWeight( 7 ); 
  stroke( 0 ); 
  noFill(); 

  background( 255 ); 
   
  for( int y = 0; y < height; y += 20 ) { 
    for( int x = 0; x < width; x += 20 ) { 
      if( random(1) <= 0.5 ) { 
        line( x, y, x + 20, y + 20 ); 
      } else { 
        line( x + 20, y, x, y + 20 ); 
      } 
    } 
  } 
}

http://10print.org/


random decisions, and the pattern changes 
chaotically. 

One way to resolve this chaos is to do something 
similar to the Blizzard question in Assignment 05. We 
compute an array of random numbers up front, and 
refer back to those numbers every time we draw. 
(Exercise: do it!) But there’s a better way, one that 
doesn’t rely on storing any explicit random numbers. 
The built-in function randomSeed() takes an integer 
as input and resets Processing’s random number 
generator based on that “seed”. For any given seed, 
any sequence of calls to random() will return the 
same sequence of answers. So we can fix the sketch 
above simply by forcing the same seed at the start of 
draw(). 

Why does this work? It’s a mathematical fact that may 
surprise others. Most random number generators 
produce numbers that aren’t “random” at all, merely 

void setup() 
{ 
  size( 600, 400 ); 
  strokeCap( ROUND ); 
  strokeWeight( 7 ); 
  stroke( 0 ); 
  noFill(); 
} 

void draw() 
{ 
  background( 255 ); 
   
  for( int y = 0; y < height; y += 20 ) { 
    for( int x = 0; x < width; x += 20 ) { 
      if( random(1) <= 0.5 ) { 
        line( x, y, x + 20, y + 20 ); 
      } else { 
        line( x + 20, y, x, y + 20 ); 
      } 
    } 
  } 
}

Example sketch: TenPrint



unpredictable. They’re usually called pseudorandom. 
Pseudorandom numbers are perfectly fine as a source 
of chaos for art and design purposes, but it’s very 
dangerous to assume they’re truly random. 
Cryptographic systems based on pseudorandom 
numbers are easier to hack. Gambling machines that 
use pseudorandom numbers without care can be 
beaten. When real randomness matters, there are 
better sources and better algorithms, though it’s 
always a hard problem. 

So far this sketch works fine, but what if we want to 
scroll the random maze? We can restart the sequence 
of random numbers, but we can’t translate it or 
otherwise extend it to cover new grid cells as they 
enter the screen. What we really need is some way to 
conceptually “attach” random numbers to every point 
in an ambient field in space. That would let us develop 
a theoretically infinite grid of slashes and backslashes, 
and simply show a small fragment of it in every frame. 

That’s one possible use of the built-in noise() 
function. This function can be passed one, two, or 
three floating-point numbers as parameters. In one 
dimension, the noise function produces an 
unpredictable number for every input. That number 
never changes—it’s permanently associated with the 
input number. 

By default, the noise() function has interesting 
statistical properties. At very fine scales (i.e., when 
you zoom in on it), it changes slowly and looks very 
smooth.  As you zoom out is gets more chaotic, but at 
some point the function runs out of randomness and 
starts repeating. Still, there’s a wide useful range in 
which you can use this function. 

http://www.blackjackforumonline.com/content/how_to_beat_keno.htm


For the random 10 PRINT sketches, we can use the 
two-parameter version of the noise() function to 
assign random orientations to every line in the plane, 
whether or not we actually draw it. Then, we can even 
add direct manipulation and use the mouse to explore 
a conceptually infinite random pattern. 

float m = 0.01; // We’ll vary this 
   
void setup() 
{ 
  size( 600, 200 ); 
  noFill(); 
  background( 255 ); 
  beginShape(); 
  for( int idx = 0; idx < width; ++idx ) { 
    vertex( idx, noise(idx*m)*200 ); 
  } 
  endShape(); 
}

m = 0.01

m = 0.1

m = 1

m = 50000



d 
Combining fractals and randomness 

Let’s end by exploring two examples that combine 
fractals and randomness. 

Diminishing circles 

It’s easy to write a Processing sketch that places a set 
of circles completely at random. Things get more 
interesting when ask that the circles not intersect. We 
need to maintain explicit arrays for the centres and 
radii of the circles, and use code to check whether a 
new circle intersects any existing one before drawing 
it. 

Example sketch: TenPrintNoise

Example sketch: TenPrintManip

Example sketch: Truchet

Example sketch: QBert



We can make a few additional extensions to this 
sketch (not shown here) to gradually diminish the 
radius of the circles we’re trying to add. Circles never 
fill up the plane completely, so as the radius goes 
down we always eventually find places to fit new 
circles. 

float[] xs; 
float[] ys; 

boolean checkIntersection( 
  float x1, float y1, float x2, float y2 ) 
{ 
  float d = dist( x1, y1, x2, y2 ); 
  return d <= 80; 
} 

boolean maybeAddCircle( float x, float y ) 
{ 
  for( int idx = 0; idx < xs.length; ++idx ) { 
    if( checkIntersection( 
        x, y, xs[idx], ys[idx] ) ) { 
      return false; 
    } 
  } 

  xs = append( xs, x ); 
  ys = append( ys, y ); 
  return true; 
} 

void setup() 
{ 
  size( 500, 500 ); 
  stroke( 0 ); 
  colorMode( HSB, 100 ); 
   
  xs = new float[0]; 
  ys = new float[0]; 
} 

void draw() 
{ 
  float x = random( width ); 
  float y = random( height ); 
  if( maybeAddCircle( x, y ) ) { 
    ellipse( x, y, 80, 80 ); 
  } 
}



This sketch suggests a general framework for creating 
fractal-like structures. We place objects wherever they 
fit. If nothing fits, make the objects smaller. Repeat for 
as long as desired. This technique is explored in a 
paper by Dunham and Shier, and in some 2D and 3D 
examples by Paul Bourke. On the more mathematical 
side, fractals like the Apollonian Gasket are a kind 
idealized version of this circle fractal. 

Mountains 

A standard technique for generating fractal mountain 
ranges is called midpoint displacement. Given some 
lines that make up a mountain range, we divide each 
line in half and randomly move the midpoint up or 
down. The amount of displacement in Y is 
proportional to the distance between the line’s 
endpoints in X, so that we add finer details as we work 
at smaller scales. It’s easiest to use recursion to 
generate a 2D fractal mountain range.  

In addition to the number of levels remaining in the 
recursion, each recursive call takes four float 
parameters that describe the current line segment to 
“mountainify”. The base case simply draws the line 
segment. The recursive case computes the midpoint 
of the line segment (i.e., the averages of the X and Y 
coordinates). It generates a random displacement and 
moves the Y coordinate of the midpoint up or down 
by that distance, scaled by the width of the segment 
(the difference between the X values of its endpoints) 
and a global scaling factor. Then it recursive draws 
two sub-mountains, one based on the left sub-
segment and one on the right sub-segment. These 
could be drawn using lots of calls to line(), though a 
more elegant approach is to use beginShape(), 
endShape(), and vertex(). 

Example sketch: Foam

Example sketch: Mountains

http://archive.bridgesmathart.org/2014/bridges2014-79.pdf
http://www.paulbourke.net/texture_colour/randomtile/
http://en.wikipedia.org/wiki/Apollonian_gasket


This same technique adapts naturally to 3D, though 
the recursion is more complicated because we have to 
express the connectivity between every mountain 
point and its neighbours in a 2D grid. 


