
CS 116x Winter 2015
Craig S. Kaplan

Module 07
Advanced types and Object-
Oriented Programming

Topics

• Working with objects
• Defining custom classes
• Collections
• Using standard collection types

Readings

• Getting Started, Pages 129–140
• Learning Processing, Chapter 8 (see also the online

version)

d
Introduction

For the first time in a while, I’d like to introduce a few
new ways to write programs. That is, I won’t be talking
about new libraries that give us extra functionality
(like ControlP5 or Fisica), nor will I be explaining the
effective use of built-in functions (like pushMatrix()
or popMatrix()). Instead, we’re actually going to
grow the syntax of the Processing (well, Java)
language itself. There won’t suddenly be new
programs we can write that we couldn’t have written
before by other means. But new constructs give us
opportunities to model the solutions to problems in
different, sometimes more elegant, ways. And some
programming problems can be solved much more
elegantly with the help of Object-Oriented
Programming. I’ll also introduce some new built-in

https://processing.org/tutorials/objects/

types to handle collections of data. For the most part,
that won’t require adding to the language, though we
may require a few small tweaks to get around places
where Processing doesn’t work elegantly with objects.

d
Understanding Objects

Objects have snuck into the course in a few places so
far. At the time I made an effort to gloss over the
“objectness" of those ideas, because getting into all
the details was a can of worms that would distract
from the topic being discussed. Here are some clear
signs that you’re working with objects:

• You’re using types that start with capital letters
(such as String, PImage, PShape, FWorld, and
Button). There’s no requirement that object types
be given capitalized type names. It’s a convention—
we all agree to do it because it makes code easier to
read.

• You put a dot between two words. For example,
writing img.width, myarray.length, or
a_circle.setVelocity(). The “dot” operator
allows you to reach into an object and either read a
piece of data from it or send a message to it.

• You use the special keyword new. I’m not talking
specifically about arrays; for example, we used new a
lot when working with Fisica. Arrays are a bit special
in Processing, though in fact they’re also objects.

• You use the magic word this. A tiny piece of my
soul dies every time I have to invoke this without
explanation.

In fact, objects are a lot more pervasive than that. It
turns out that everything you do in Processing is
running inside an object! Processing just does a good
job of hiding this fact from you so that you don’t have
to think about it.

When you first start learning programming in
Processing, it’s safe to ignore most of the object-
related stuff. But as more an more of it creeps into
examples and libraries, it becomes increasingly

important to understand it. There’s also a more direct
benefit: programming with objects is a powerful and
elegant technique that will make you a better
programmer.

With that in mind, let’s review what we already know
about objects based on code we’ve seen in the course
so far.

• At the highest level, objects behave like any other
values in Processing. Squint your eyes for a second
and think about the absolutely generic things you
can do with values that don’t depend on the
specifics of their types. You can assign them to
variables, put them in arrays, pass them to functions,
get them back from functions, and so on. These
behaviours are obvious with simple types like int
and float. But objects can do the same things.
We’ve already seen examples in the course of arrays
of PImage, String variables, and so on.

• It looks like objects can aggregate data together: a
single object can somehow have multiple values
inside of it. For example, given a variable of type
PImage, you can ask for its width, its height, and its
array of pixels. Note that every distinct PImage can
have its unique set of values inside of it. If I have an
array of PImages, I can get ten different ints when I
ask each one for its width.

• Objects also have behaviour. I’ve spoken so far this
term about sending messages to objects. Sometimes
these messages are a way to tell the object to do
something, to change the program but not provide
some information back as a result. In Fisica, when
we send the setVelocity() message to an FBody,
something changes inside the object behind the
scenes. Some messages are more about querying
the object for information. When we send a PImage
the get() message, we’re asking it to tell us
something about itself without modifying itself. A
message can take a combination of both of these
forms, but it can be helpful to think of messages as
being primarily about modifying the object, or
primarily about getting information from it.

• We can create objects using the new keyword. This
was most obvious when using the Fisica library,

since it was our responsibility to create all physical
objects and then add them to the world. ControlP5
hides new from us, but it’s using it at some point to
generate objects representing sliders, buttons,
checkboxes, and so on.

Why is all of this so useful? There are a few standard
reasons why object-oriented programming is
considered a Good Idea.

• With objects, we can aggregate together multiple
pieces of data that form a cohesive whole. So far in
this course, when we’ve wanted to keep track of, say,
the X and Y coordinates of a point, we’ve been
forced to use two separate variables (or two
separate, parallel arrays of variables). But
conceptually, a 2D point is a single object that
should be treated as having its own distinct identity.
OO lets us “bind” multiple pieces of data together
this way. As a side benefit, it becomes possible to
return multiple values from a function, by returning
an object containing all the values of interest.

• We can associate behaviour (functions) more tightly
with the pieces of data that the functions operate
on. This helps create a separation of concerns, and
clarifies the breakdown of code in large programs.

• The messages supported by an object act as a kind
of public interface to that function’s data, an
approved way to deal with the information it
contains. Using an object’s public interface avoids
having to reach in and fiddle with low-level data
directly.

• Objects are just one more way to think about solving
problems. Some real-world problems are most easily
expressed by mapping the main pieces of the
problem into objects.

Of course, there’s more. Object-oriented programming
is a very large topic, and there are many other
advanced aspects to it that we won’t talk about in this
course.

d
Object-oriented programming terminology

Let’s lay down the specialized language of object-
oriented programming up front, and use the terms in
the rest of the module.

• Class: the type associated with a set of related
objects. String, PImage and Button are all classes.
“Primitive” types like int, float and boolean aren’t
classes—these basic types don’t have the properties
of objects.

• Instance: an object belonging to a particular class. In
a line of code like 

we would say that img is an instance of the class
PImage.

• Field: a value that lives inside an instance. The width
and height of an image are fields of the class
PImage.

• Method: a function (“message”) that operates on an
instance.

• Constructor: a special method that is used to
initialize a new instance of a class. The constructor is
the method that is invoked when you use new. 
 

d
Writing classes

A class is a way to group together a collection of
related values and methods. In fact, it introduces a
new scope in which those values and methods co-
exist. It makes sense, then, that a class declaration

PImage img = loadImage("cat.jpg");

surrounds most of the meat of the class inside of curly
braces, like a function:

Every class declaration starts with the keyword class
followed by the name of the class to be defined
(usually capitalized, by convention). Then, inside the
curly braces, we can introduce fields and methods,
including constructors. Let’s do that in a second; first,
it’s good to pause and notice that even a trivial class
already behaves like other types in Processing. In the
code below we introduce a new class T with no fields
and no methods. Instances of this class have no real
behaviour or state—they don’t hold any information
and don’t compute anything for you. But they do have
their identity as members of the type T, which means
that you can do things like create them, make arrays
of them, pass them to functions, and so on.

Now, a small piece of good news: that’s almost the
only new syntax we need in order to invent new
classes. Field declarations inside a class look just like
variable declarations. Method declarations look just
like function declarations. There are just a few
remaining additions:

class BestClassEver
{
 // Fields
 // Constructors
 // Methods
}

class T {}

void doSomething(T t)
{
 println("Yep, it's a T.");
}

void setup()
{
 T my_t = new T();
 T[] array_of_t = new T[27];
 doSomething(my_t);
}

• A constructor looks like a method, but it doesn’t
have a return type, and its name is required to be
the same as the name of the surrounding class. It’s
used to initialize a freshly minted instance. A
constructor can take any number of arguments (or
none at all), just like any function or method. If you
don’t include a constructor for a class, Processing
will automatically create a zero-argument “do-
nothing” constructor for you.

• We use new to ask Processing to set aside space for
a new instance of a class, and to invoke the
constructor to initialize that instance.

• There’s a special value called null, which is
implicitly compatible with every class. It means
“undefined”, and can be assigned to variables or
passed to functions. It’s an error to do anything with
null beyond naming it. 
 
 
 
 
 
 
 
 
 
 
 

class Test
{
 int x;

 // Constructor
 Test(int some_x)
 {
 x = some_x;
 }
}

In fact, you can have multiple
distinct constructors in the
same class, as long as
Processing can tell them apart
based on the types of the
arguments.

Test my_test = new Test(13);

 

• There’s also the mysterious keyword this, but I’m
going to hold off on explaining that for just a bit
longer.

The key to understanding classes is that the inside of
a class is a new scope. Recall that a scope is a region
of the program in which a specific set of declarations
is visible. When you create an instance of a class using
new, you get a fresh copy of all the fields, bound
together in one object. When you call a method of a
class, that method gets to manipulate the data of one
particular instance of the class. Which one? The one
that you called the method on (i.e., the one you sent
the message to, as I said in earlier modules). At the
point where you call the method, that’s the variable
name (or more generally, the expression) to the left of
the dot. Similarly, the fields of different instances are
entirely distinct from each other.

void setup()
{
 // Totally fine: assign p to be
 // invalid for now.
 Point p = null;
 // ERROR! Can't manipulate a field
 // of the null value.
 p.x = 3;

 // OK: you're always allowed to ask
 // if a variable holds null or a
real
 // value.
 if(p == null) {
 // The variable used to be  
 // invalid, but after this it
 // will point to an actual  
 // instance of Point.
 p = new Point(3, 4);
 }
 // Now that p is valid, it's OK to  
 // do things with it like call a
method.
 println(p.mag());
}

Let’s put all of that together into a simple, complete
class.

Objects are especially useful when you need to
maintain a lot of copies of similar-looking data. For
example, it’s far more elegant to create a Point class
and use an array of Points than to deal with two
separate, parallel arrays of X and Y coordinates. This
insight can be applied to sketches throughout the
term in which we dealt with multiple arrays in parallel.

class NamedNumber
{
 float val;
 String name;

 NamedNumber(
 float a_val, String a_name)
 {
 val = a_val;
 name = a_name;
 }

 void report()
 {
 println(name, "=", val);
 }
}

void setup()
{
 NamedNumber n1 =
 new NamedNumber(PI, "PI");
 NamedNumber n2 =
 new NamedNumber(2.718, "e");
 NamedNumber n3 =
 new NamedNumber(6, "Six");

 n1.report();
 n2.report();
 println(n1.val - n2.val);
}

It’s not that objects can only be used in conjunction
with collections like arrays. You can declare a class
and create instances of it wherever you want. It’s just
that if you only plan to use one or two instances of an
object, the fields you have in mind might just as easily
be made into global variables and methods made into
global functions. However, another place where you
might implicitly want to track a lot of copies of an
object would be when using recursion. For example, a
Point class could be used in conjunction with
recursion to simplify the construction of a fractal like
the Sierpinski gasket or the Pinwheel tiling. The result
might use roughly the same number of lines of code,
but is perhaps a little cleaner and easier to think
about.

Example sketch: DirectManipMultiOO

Example sketch: FoamOO

Example sketch: CornerGasketOO

Example sketch: BlizzardOO

void setup()
{
 Point[] pts = new Point[10];
 for(int idx = 0;
 idx < pts.length; ++idx) {
 pts[idx] =
 new Point(idx, 100 * sin(idx));
 }

 float total = 0;
 for(int idx = 0; idx < 10; ++idx) {
 total += pts[idx].mag();
 }

 println(total);
}

Unfortunately, some of the
built-in Processing functions for
arrays, like append() and
shorten(), don’t work quite
right with arrays of instances.
See the documentation for
those functions, which explains
how to work around this
deficiency.

The body of a method lives implicitly within a single
instance of the class, the instance that first received
the method call (though of course it may have indirect
access to other instances if they’re passed in as
arguments or visible globally). Every now and then we
want to be able to refer to the instance itself, i.e., the
surrounding object that we think we’re inside of. That,
at last, is the meaning of this. The name is defined
only inside class scope, where it refers to the
surrounding instance in which the code is executing.
In all the cases that we’ve initialized libraries by
passing in this, we’ve been handing the library a
copy of the surrounding sketch. That’s because all the
code you write is implicitly running inside an instance
of a class called PApplet, and some libraries need to
be able to do things to the whole applet. The use of
this also explains the magic behind initialization of
ControlP5 widgets. A method like setPosition()
might look something like this internally:

For the record, these are advanced programming
tricks, and I wouldn’t expect a student in this course
to be able to use them. I simply felt obliged to explain
a minor annoyance that has been popping up
throughout the term.

There is one spot where it’s occasionally useful to
refer explicitly to this—in a constructor and in other
methods that set local fields directly from arguments.

class Button
{
 float my_x;
 float my_y;

 // Lots of other stuff...

 Button setPosition(
 float x, float y)
 {
 my_x = x;
 my_y = y;

 // Clever trick!
 return this;
 }
}

You can use the field name as the argument name and
then clear up the ambiguity with this:

As I said earlier, Object-Oriented programming is a
huge topic. Like Human-Computer Interaction, many
computer scientists spend their lives studying it, and
there are whole research conferences devoted to the
topic. Even within Java (and therefore in Processing)
there’s a lot more that’s possible with OO—interfaces,
inheritance, and templated types, just for starters. But
the amount that we’ve seen here is enough to get
started writing simple classes that simplify some
programming tasks.

d
The shape of data

The programs we’ve written in this course don’t
typically manipulate large amounts of data. They tend
to stick to a few small values, or at most a small
collection of related objects. But in many real-world
contexts, we need to maintain and manipulate large
quantities of heterogeneous data (i.e., data made up
of lots of different types, a mix of numbers, strings,
booleans, and so on). I don’t want to get too bogged
down talking about concrete data structures and how
to use them, but it’s worth surveying the landscape
briefly at a high level.

We’ve already talked a bit about dealing with arrays of
instances. An array of instances looks something like a
database. You don’t have experience programming

class Point
{
 float x;
 float y;

 Point(float x, float y)
 {
 this.x = x;
 this.y = y;
 }
}

with databases, but certainly with using them. Just
about any large-scale web service (for starters,
QUEST, JobMine, Twitter, Facebook, Amazon, etc.,
etc.) is backed by a database. For our purposes, we
can think of a database as a large collection of
records, each of which contains a similar arrangement
of pieces of information. A good self-contained
example of a database is your iTunes music collection:

Here, we might envision creating a Song class that
holds all the information about an individual song: the
title, the artist, the recording date, the duration, the
genre, the rating the album name, the location of the
file on your hard drive, the number of times it’s been
played, and so on. The entire database can then be
viewed as an array of Songs.

In fact, this metaphor gives us another way to think
about how we’ve been coding this term. Up until this
module, we would have implemented this database by
giving the columns priority: each column would have
become a global variable, an array of the type of the
information in that column. We would have to have
worked hard to make sure all the columns stayed in
sync with each other. Now, with objects, we can give
the rows priority: we create a data type that can
represent a single row of the database, at which point
it’s easy to make a single array of those rows.

There are two other standard “shapes” to collections
of data that are worth mentioning:

• A dictionary is a way of associating a set of
indexable keys to values. In the case of an actually
dictionary, the keys are words and the values are
their definitions. An old-fashioned dictionary is
organized as a long list of key/value pairs. The keys
are organized in alphabetical order to make the key
you’re interested in easier to find (assuming your
spelling is good!). 
 
More generally, though, computer scientists think of
a dictionary as any chunk of data in which you can
look up the value attached to a particular key, add
new key/value pairs, and remove a key and its value.
We don’t need to think too hard about how this is
accomplished; we simply trust the dictionary library
to make sure these operations are efficient. A phone
book is an example of a dictionary: the keys are
names of people, and the values are their phone
numbers. In this course, clicker registrations are a
dictionary that maps clicker IDs to student IDs. The
exam seating system is a dictionary that maps
student IDs to seats in rooms. Dictionaries are used
throughout computer programming. 
 

• Many collections of data have some kind of
hierarchical organization. The file system on your
hard drive is organized as folders, where folders can
contain files or other folders to any depth. A
company’s org chart is another hierarchy, and has a
simple structure as long as we assume that
everybody has exactly one boss. Even an Illustrator
document is hierarchical—the document is divided
into layers, and each layer is made out of a nested
hierarchy of groups. Groups can contain paths or
other groups. 
 
Hierarchical data like is usually organized into what
computer scientists call a tree. Tree-structured data
is also very important in computer programming.
We’re not going to see a concrete example just yet,
but hopefully by the end of the term we’ll have

encountered at least one tree in the form of the
Processing class JSONObject.

