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Module 08 
Image Processing 

Topics 

• High-level image operations: cropping, resizing, 
rotating 

• Reading individual pixels, halftoning 
• Processing individual pixels, colour manipulations 
• Processing pixel neighbourhoods 
• Working with webcams 

Readings 

• Shiffman’s online notes about Images and Pixels 
• Getting Started, Pages 78–82 
• Learning Processing, Chapter 15 

d 
Introduction 

Last term you learned a little bit about how to load 
images and examine their contents, though it was 
nearly at the end of the course and mostly for 
demonstration purposes. I’d like to spend a bit more 
time on the subject of image processing, and get into 
some detail on the programming techniques that 
underlie typical image manipulations you’d do every 
day in tools like Photoshop. 

Full disclosure: most of the time a photo editing tool 
is a perfectly fine way to use techniques like these, 
without having to write a line of code. But once in a 
while it’s really useful to express image 
transformations as small programs. This is especially 
true when you want to do the same thing to a large 
set of photos, or where your image manipulation 

https://processing.org/tutorials/pixels/


depends upon some numerical feature of an image 
such as its dimensions. 

d 
Cropping images 

Let’s assume that the goal is to write a sketch that 
reads an image from a file, performs some 
transformation on it, and writes the resulting image to 
a new file. If the transformation of the day is simply to 
crop an image, you’ve already got all the know-how 
you need to make this work. The key is to realize that 
the built-in save() function writes whatever happens 
to be in the sketch window out to a file. To crop, then, 
just create a sketch window whose size is the desired 
cropped image size, then use the image() function to 
draw the source image so the part you want is visible 
within the window. 

This is a bit silly. It relies on the interaction between 
the sketch window and the image, and forces you 
think about moving the image opposite to how you 
want to crop. Plus, it’s no good if you’re actually using 
the sketch window to do something else. It would be 
more sensible to be able to ask an image to give you a 
block of pixels. And PImage has a method that does 
exactly that. It’s a four-parameter version of the get() 
method that takes parameters similar to rect() (x, y, 
width, height) and returns a new PImage containing 
the extracted rectangle from the original image. 

void setup() 
{ 
  PImage img = loadImage( "otis.jpg" ); 
  size( 200, 200 ); 
  image( img, -100, -300 ); 
  save( "otis_cropped.jpg" ); 
  exit(); 
}



 
Of course, if we were writing a more fully featured 
sketch, we might consider allowing the user to drag 
out a rectangle interactively (using direct 
manipulation) that lets them define where the crop 
will take place. 

The ability to extract portions of an image can lead to 
some interesting ideas for sketches, such one which 
an image is broken into a grid of tiles and tiles swap 
with each other randomly. A more refined version of 
the same underlying idea would be a simulation of a 
classic Sliding 15 puzzle. 

d 
Scaling images 

As with cropping, there’s a means of scaling images 
that we’ve seen before. The built-in function image() 
has a five-parameter version that takes as input not 
just the image and where to place it, but also the 

Example sketch: LiveCrop

Example sketch: Swap

Example sketch: Sliding15

void setup() 
{ 
  PImage img = loadImage( "otis.jpg" ); 
  PImage cr = img.get( 
    100, 300, 200, 200 ); 
  cr.save( "otis_cropped_2.jpg" ); 
  exit(); 
}

http://en.wikipedia.org/wiki/15_puzzle


dimensions of a rectangle. The image will be scaled to 
fit that rectangle. 
 

But once again, this is a convoluted way to scale an 
image.  Fortunately, Processing gives us a built-in 
method of PImage that does the same thing, and 
more. The resize() method will change an image to 
have the dimensions passed in as parameters. Note 
that it overwrites the unscaled image; if you need 
both the original and rescaled versions, make a copy 
first. (If you just need the scaled copy, you can just 
overwrite the original and skip a few lines of code.) 

d 
Rotating images 

When it comes to general image rotation, I really don’t 
know of a built-in technique that doesn’t just use 
generic geometric context functions. If you want to 
rotate an image by some arbitrary amount, draw it in a 

void setup() 
{ 
  PImage img = loadImage( "otis.jpg" ); 
  size( 400, 200 ); 
  image( img, 0, 0, width, height ); 
  save( "otis_scaled.jpg" ); 
  exit(); 
}

void setup() 
{ 
  PImage img = loadImage( "otis.jpg" ); 
  // This version of get() just 
  // clones an image. 
  PImage img_copy = img.get(); 
  img_copy.resize( 400, 200 ); 
  img_copy.save( "otis_scaled.jpg" ); 
  exit(); 
}



geometric context that’s rotated and then take a 
snapshot: 
 

It would be natural at this point to question the quality 
of these rotated images. Drawing a rotated image is a 
difficult problem, and many algorithms for it do a 
poor job. We don’t know what sort of filter Processing 
is using, and whether the quality will be comparable 
to Photoshop or other image editing software. For the 
purposes of this course, we’ll accept the output 
Processing gives us and move on. 

There are exactly three special cases of rotation that 
we can attack directly: rotations by 90, 180, and 270 
degrees. These can be done by nested loops over 
arrays, because rotations by these amounts map the 
pixel grid right back onto itself. We can trust these 
rotations, because they’re perfectly precise. 

d 
Image pixels 

Processing gives us two ways to access an image pixel 
by pixel. The first, and probably easiest, is to use the 
two-parameter get() method of a PImage. That 
method takes the x and y coordinates of a pixel as 

void setup() 
{ 
  PImage img = loadImage( "otis.jpg" ); 
  size( 200, 200 ); 
  rotate( 0.25*PI ); 
  image( img, -200, -300 ); 
  save( "otis_rotated_cropped.jpg" ); 
  exit(); 
}

Example sketch: Rotate90



input, and returns a color telling you what’s at that 
pixel. 

The get() method works, but it can be slow. It’s best 
to reserve it for cases where you’re accessing only a 
few pixels at a time. For example, it’s fairly easy to 
write a sketch that gives you an “eyedropper”, a 
visualization of the colour of every pixel in a larger 
image. 

If you know you’ll be walking over all the pixels in an 
image systematically, it’s better to use the image’s 
pixels[] array. The trick is that you must then do a 
bit of extra work to make sure the array is valid, in the 
form of loadPixels(): 

void setup() 
{ 
  PImage img = loadImage( "otis.jpg" ); 
  int r = 0; 
  int g = 0; 
  int b = 0; 
  float sz = img.width * img.height; 
   
  for( int y = 0; y < img.height; ++y ) { 
    for( int x = 0; x < img.width; ++x ) { 
      color c = img.get( x, y ); 
      r += red( c ); 
      g += green( c ); 
      b += blue( c ); 
    } 
  } 
   
  color avg = color( 
    r/sz, g/sz, b/sz ); 
  background( avg ); 
}

Example sketch: PerPixel



The array is declared in PImage, but Processing 
doesn’t guarantee that it’s actually storing the image 
data in that array—it might be using some hidden 
resource in the computer that’s more efficient. Calling 
loadPixels() forces Processing to synchronize the 
pixels[] array with whatever internal representation 
it’s using of the image. If you also modify the pixels 
(the example above doesn’t), then you should call 
img.updatePixels() after all processing is finished in 
order to force Processing to “remember” your 
changes by synchronizing back with its internal 
representation of the image. 

It’s possible to use image content to drive all sorts of 
interesting and compelling visualization processes. 
We’ve already played with a few this term, including 
Unknown Pleasures in Assignment 1 and Impressionist 
in Assignment 2. We can expect that most of these 
techniques will involve reading every pixel in an image 
and doing something with the colour. We can use the 
following code as a template. Here I’ve moved pixel-
level processing to the draw() function, in case we 
want to revise this later to do something different 
each frame. 

void setup() 
{ 
  PImage img = loadImage( "otis.jpg" ); 
  int r = 0; 
  int g = 0; 
  int b = 0; 
  int sz = img.width * img.height; 
  img.loadPixels(); 

  for ( int idx = 0; idx < sz; ++idx ) { 
    color c = img.pixels[idx]; 
    r += red( c ); 
    g += green( c ); 
    b += blue( c ); 
  } 

  color avg = color( 
  r/float(sz),  
  g/float(sz),  
  b/float(sz) ); 
  background( avg ); 
}



My favourite examples of pixel-level visualizations 
tend to be based on halftoning: the representation of 
continuous tone (i.e., greyscale values) using only 
black on white. It’s pretty easy to scale an input image 
down to a small size, and then represent each of its 
pixels using a suitably sized object (say, a square or 
circle) in a grid cell. There’s one small trick required to 
get this right: as an object gets bigger, its area goes 
up with the square of its size. You need to 
compensate for that in order to get “pixels” that cover 
the correct proportions of their cells. 

There are many situations in which we want to 
process every pixel in isolation, turning an old image 
into a new one of the same resolution. Typical 
examples include converting an image to greyscale, 
adjusting the brightness or contrast, or any of a 
thousand Instagram-like colour space effects. For 
most of these effects, we can use the same general 
structure for the code, and focus our attention on 

PImage img; 

void setup() 
{ 
  img = loadImage( "otis.jpg" ); 
} 

void draw() 
{ 
  img.loadPixels(); 

  for( int y = 0; y < img.height; ++y ) { 
    for( int x = 0; x < img.width; ++x ) { 
      color c = img.pixels[ y*width+x ]; 
      // OK, we've got the colour of one 
      // pixel, now do something with it. 
    } 
  } 
   
  noLoop(); 
}

Example sketch: Halftoning



designing a helper function that transforms an input 
colour into an output colour. 

For example, we can use the built-in brightness() 
function to convert a colour image to greyscale: 

Ah, but how is brightness actually computed? For the 
record, you can’t just use the amount of red, green or 
blue, or even the average. The problem is that 
different primary colours have different perceived 
brightnesses: full green contributes more to 
brightness than pure blue. The usual formula for 
brightness takes these differences into account: 

It’s possible to write all kinds of other alternatives to 
processColour() that shift hue around, adjust 
saturation or brightness, map between different 
colour ranges, perform gamma correction, and so on. 
Many colour space transformations can be expressed 
using a “weighted sum” like the one above, in which 

// See the rest of the TransformColour sketch 
// for the code that uses this function. 

color processColour( color c ) 
{ 
  // The "trivial" colour processing function: 
  // just return the input colour. 
  return c; 
}

color processColour( color c ) 
{ 
  float b = brightness( c ); 
  return color( b ); 
}

color processColour( color c ) 
{ 
  float b = 0.2126*red(c) 
    + 0.7152*green(c) 
    + 0.0722*blue(c); 
  return color( b ); 
}



each of the outgoing R, G, and B is a combination of 
the incoming R, G, and B. 

A lot of specific transformations are special cases of 
this one, in which you don’t need quite as much math. 

In some image transformations, we combine a pixel’s 
colour content with its location (i.e, its coordinates) to 
produce novel effects. For example, in “vignetting”, 
we multiply a pixel’s brightness by some function of 
that pixel’s distance from the centre of the image. 
That way, pixels can retain their original brightness 
near the centre of the image, but the brightness fades 
towards the periphery, simulating the imperfect light 
transport of old lenses. You can imagine modifying 
the processColour() function so that it takes three 
parameters instead of just one: the colour itself, and 
the x and y coordinates of the pixel being processed. 

// Define nine "weights" that control the 
// relative amounts of input R, G, and B 
// mixed in to the output R, G and B. 

float[] weights = { 
   0.6, 0.3, 0.1, 
   0.0, 0.0, 1.0, 
   0.9, 0.0, 0.1 }; 
    
color processColour( color c ) 
{ 
  float r = red(c); 
  float g = green(c); 
  float b = blue(c); 
   
  return color( 
    weights[0]*r + weights[1]*g + weights[2]*b, 
    weights[3]*r + weights[4]*g + weights[5]*b, 
    weights[6]*r + weights[7]*g + weights[8]*b ); 
}

http://en.wikipedia.org/wiki/Vignetting


d 
Combining images 

Some operations involve combining two or more 
images (say, all of the same resolution) into a single 
result. These sorts of image operations can easily be 
seen in the form of the Layer Blend Modes in 
Photoshop—each mode is a way to combine a layer 
with the layer underneath it. 

It isn’t too hard to, say, multiply the contents of two 
images together pixel-by-pixel by walking over the 
two arrays in sync. But let’s skip the question of how 
to code that ourselves from scratch, and note that 
Processing has a lot of these operations built in: have 
a look at the blend() method of PImage. 

d 
Neighbourhoods of pixels 

A final class of operations I’ll mention are the ones in 
which the value of every pixel in the result image 
depends on a neighbourhood of pixels in the initial 
image. A classic example is blurring: every pixel in the 
result is a weighted average of that pixel with its 
neighbours out to some distance. Conceptually, this 
isn’t too much harder to implement in code than the 
other transformations we’ve seen so far. But there are 
annoying cases that require a fair amount of 
additional coding. Most obviously, these algorithms 
often try to read pixels from off the edge of the 
image. We need a “policy” for what to do in such 
cases. There’s no right answer, but a few standard 
options. We can assume all off-image pixels are black, 
or that they’re copies of the pixels at the edge of the 
image, or that the image wraps around, etc. 



Blurring is an important enough operation that it’s 
also built in to Processing. PImage supports a 
filter() method that can apply one of a few 
different useful image processing filters, the most 
important of which is almost certainly Gaussian Blur. 

As with other functions we’ve seen dealing with pixels, 
the methods inside of PImage are mostly also 
available at the global level, in which case they 
operate directly on the sketch window itself. This can 
be used to produce some interesting visual effects, 
like a ghostly tail that follows the mouse. 

d 
Working with the camera 

One of the first things that attracted me to Processing 
was how easy it was to access my laptop’s webcam 
and process the images that it was reading from the 
outside world. The camera plugs in naturally to the 
rest of Processing through the video library. You 
create an instance of the Capture class to obtain 
frames from the camera. If the camera tells you that a 
new frame is available (via the available() method) 
then you can ask it to download the next frame (via 
the read() method). Alternatively, you can write a 
captureEvent() function, which the library will call 
when a new camera frame is available. Either way, at 
that point the camera behaves just like any other 
PImage. The simplest demonstration of using the 
webcam is a “virtual mirror”. Note that you have to flip 

Example sketch: ManualBlur

Example sketch: FilterBlur

Example sketch: CRTMouse



the camera’s image horizontally or it’s very hard to 
interact with your image! 

At this point, we can combine a virtual mirror with 
many of the other effects we looked at in this module 
already, for example halftoning.

Example sketch: Mirror

Example sketch: HalftoningMirror


