
CS 116x Winter 2015
Craig S. Kaplan

Module 08
Image Processing

Topics

• High-level image operations: cropping, resizing,
rotating

• Reading individual pixels, halftoning
• Processing individual pixels, colour manipulations
• Processing pixel neighbourhoods
• Working with webcams

Readings

• Shiffman’s online notes about Images and Pixels
• Getting Started, Pages 78–82
• Learning Processing, Chapter 15

d
Introduction

Last term you learned a little bit about how to load
images and examine their contents, though it was
nearly at the end of the course and mostly for
demonstration purposes. I’d like to spend a bit more
time on the subject of image processing, and get into
some detail on the programming techniques that
underlie typical image manipulations you’d do every
day in tools like Photoshop.

Full disclosure: most of the time a photo editing tool
is a perfectly fine way to use techniques like these,
without having to write a line of code. But once in a
while it’s really useful to express image
transformations as small programs. This is especially
true when you want to do the same thing to a large
set of photos, or where your image manipulation

https://processing.org/tutorials/pixels/

depends upon some numerical feature of an image
such as its dimensions.

d
Cropping images

Let’s assume that the goal is to write a sketch that
reads an image from a file, performs some
transformation on it, and writes the resulting image to
a new file. If the transformation of the day is simply to
crop an image, you’ve already got all the know-how
you need to make this work. The key is to realize that
the built-in save() function writes whatever happens
to be in the sketch window out to a file. To crop, then,
just create a sketch window whose size is the desired
cropped image size, then use the image() function to
draw the source image so the part you want is visible
within the window.

This is a bit silly. It relies on the interaction between
the sketch window and the image, and forces you
think about moving the image opposite to how you
want to crop. Plus, it’s no good if you’re actually using
the sketch window to do something else. It would be
more sensible to be able to ask an image to give you a
block of pixels. And PImage has a method that does
exactly that. It’s a four-parameter version of the get()
method that takes parameters similar to rect() (x, y,
width, height) and returns a new PImage containing
the extracted rectangle from the original image.

void setup()
{
 PImage img = loadImage("otis.jpg");
 size(200, 200);
 image(img, -100, -300);
 save("otis_cropped.jpg");
 exit();
}

Of course, if we were writing a more fully featured
sketch, we might consider allowing the user to drag
out a rectangle interactively (using direct
manipulation) that lets them define where the crop
will take place.

The ability to extract portions of an image can lead to
some interesting ideas for sketches, such one which
an image is broken into a grid of tiles and tiles swap
with each other randomly. A more refined version of
the same underlying idea would be a simulation of a
classic Sliding 15 puzzle.

d
Scaling images

As with cropping, there’s a means of scaling images
that we’ve seen before. The built-in function image()
has a five-parameter version that takes as input not
just the image and where to place it, but also the

Example sketch: LiveCrop

Example sketch: Swap

Example sketch: Sliding15

void setup()
{
 PImage img = loadImage("otis.jpg");
 PImage cr = img.get(
 100, 300, 200, 200);
 cr.save("otis_cropped_2.jpg");
 exit();
}

http://en.wikipedia.org/wiki/15_puzzle

dimensions of a rectangle. The image will be scaled to
fit that rectangle.

But once again, this is a convoluted way to scale an
image. Fortunately, Processing gives us a built-in
method of PImage that does the same thing, and
more. The resize() method will change an image to
have the dimensions passed in as parameters. Note
that it overwrites the unscaled image; if you need
both the original and rescaled versions, make a copy
first. (If you just need the scaled copy, you can just
overwrite the original and skip a few lines of code.)

d
Rotating images

When it comes to general image rotation, I really don’t
know of a built-in technique that doesn’t just use
generic geometric context functions. If you want to
rotate an image by some arbitrary amount, draw it in a

void setup()
{
 PImage img = loadImage("otis.jpg");
 size(400, 200);
 image(img, 0, 0, width, height);
 save("otis_scaled.jpg");
 exit();
}

void setup()
{
 PImage img = loadImage("otis.jpg");
 // This version of get() just
 // clones an image.
 PImage img_copy = img.get();
 img_copy.resize(400, 200);
 img_copy.save("otis_scaled.jpg");
 exit();
}

geometric context that’s rotated and then take a
snapshot:

It would be natural at this point to question the quality
of these rotated images. Drawing a rotated image is a
difficult problem, and many algorithms for it do a
poor job. We don’t know what sort of filter Processing
is using, and whether the quality will be comparable
to Photoshop or other image editing software. For the
purposes of this course, we’ll accept the output
Processing gives us and move on.

There are exactly three special cases of rotation that
we can attack directly: rotations by 90, 180, and 270
degrees. These can be done by nested loops over
arrays, because rotations by these amounts map the
pixel grid right back onto itself. We can trust these
rotations, because they’re perfectly precise.

d
Image pixels

Processing gives us two ways to access an image pixel
by pixel. The first, and probably easiest, is to use the
two-parameter get() method of a PImage. That
method takes the x and y coordinates of a pixel as

void setup()
{
 PImage img = loadImage("otis.jpg");
 size(200, 200);
 rotate(0.25*PI);
 image(img, -200, -300);
 save("otis_rotated_cropped.jpg");
 exit();
}

Example sketch: Rotate90

input, and returns a color telling you what’s at that
pixel.

The get() method works, but it can be slow. It’s best
to reserve it for cases where you’re accessing only a
few pixels at a time. For example, it’s fairly easy to
write a sketch that gives you an “eyedropper”, a
visualization of the colour of every pixel in a larger
image.

If you know you’ll be walking over all the pixels in an
image systematically, it’s better to use the image’s
pixels[] array. The trick is that you must then do a
bit of extra work to make sure the array is valid, in the
form of loadPixels():

void setup()
{
 PImage img = loadImage("otis.jpg");
 int r = 0;
 int g = 0;
 int b = 0;
 float sz = img.width * img.height;

 for(int y = 0; y < img.height; ++y) {
 for(int x = 0; x < img.width; ++x) {
 color c = img.get(x, y);
 r += red(c);
 g += green(c);
 b += blue(c);
 }
 }

 color avg = color(
 r/sz, g/sz, b/sz);
 background(avg);
}

Example sketch: PerPixel

The array is declared in PImage, but Processing
doesn’t guarantee that it’s actually storing the image
data in that array—it might be using some hidden
resource in the computer that’s more efficient. Calling
loadPixels() forces Processing to synchronize the
pixels[] array with whatever internal representation
it’s using of the image. If you also modify the pixels
(the example above doesn’t), then you should call
img.updatePixels() after all processing is finished in
order to force Processing to “remember” your
changes by synchronizing back with its internal
representation of the image.

It’s possible to use image content to drive all sorts of
interesting and compelling visualization processes.
We’ve already played with a few this term, including
Unknown Pleasures in Assignment 1 and Impressionist
in Assignment 2. We can expect that most of these
techniques will involve reading every pixel in an image
and doing something with the colour. We can use the
following code as a template. Here I’ve moved pixel-
level processing to the draw() function, in case we
want to revise this later to do something different
each frame.

void setup()
{
 PImage img = loadImage("otis.jpg");
 int r = 0;
 int g = 0;
 int b = 0;
 int sz = img.width * img.height;
 img.loadPixels();

 for (int idx = 0; idx < sz; ++idx) {
 color c = img.pixels[idx];
 r += red(c);
 g += green(c);
 b += blue(c);
 }

 color avg = color(
 r/float(sz),
 g/float(sz),
 b/float(sz));
 background(avg);
}

My favourite examples of pixel-level visualizations
tend to be based on halftoning: the representation of
continuous tone (i.e., greyscale values) using only
black on white. It’s pretty easy to scale an input image
down to a small size, and then represent each of its
pixels using a suitably sized object (say, a square or
circle) in a grid cell. There’s one small trick required to
get this right: as an object gets bigger, its area goes
up with the square of its size. You need to
compensate for that in order to get “pixels” that cover
the correct proportions of their cells.

There are many situations in which we want to
process every pixel in isolation, turning an old image
into a new one of the same resolution. Typical
examples include converting an image to greyscale,
adjusting the brightness or contrast, or any of a
thousand Instagram-like colour space effects. For
most of these effects, we can use the same general
structure for the code, and focus our attention on

PImage img;

void setup()
{
 img = loadImage("otis.jpg");
}

void draw()
{
 img.loadPixels();

 for(int y = 0; y < img.height; ++y) {
 for(int x = 0; x < img.width; ++x) {
 color c = img.pixels[y*width+x];
 // OK, we've got the colour of one
 // pixel, now do something with it.
 }
 }

 noLoop();
}

Example sketch: Halftoning

designing a helper function that transforms an input
colour into an output colour.

For example, we can use the built-in brightness()
function to convert a colour image to greyscale:

Ah, but how is brightness actually computed? For the
record, you can’t just use the amount of red, green or
blue, or even the average. The problem is that
different primary colours have different perceived
brightnesses: full green contributes more to
brightness than pure blue. The usual formula for
brightness takes these differences into account:

It’s possible to write all kinds of other alternatives to
processColour() that shift hue around, adjust
saturation or brightness, map between different
colour ranges, perform gamma correction, and so on.
Many colour space transformations can be expressed
using a “weighted sum” like the one above, in which

// See the rest of the TransformColour sketch
// for the code that uses this function.

color processColour(color c)
{
 // The "trivial" colour processing function:
 // just return the input colour.
 return c;
}

color processColour(color c)
{
 float b = brightness(c);
 return color(b);
}

color processColour(color c)
{
 float b = 0.2126*red(c)
 + 0.7152*green(c)
 + 0.0722*blue(c);
 return color(b);
}

each of the outgoing R, G, and B is a combination of
the incoming R, G, and B.

A lot of specific transformations are special cases of
this one, in which you don’t need quite as much math.

In some image transformations, we combine a pixel’s
colour content with its location (i.e, its coordinates) to
produce novel effects. For example, in “vignetting”,
we multiply a pixel’s brightness by some function of
that pixel’s distance from the centre of the image.
That way, pixels can retain their original brightness
near the centre of the image, but the brightness fades
towards the periphery, simulating the imperfect light
transport of old lenses. You can imagine modifying
the processColour() function so that it takes three
parameters instead of just one: the colour itself, and
the x and y coordinates of the pixel being processed.

// Define nine "weights" that control the
// relative amounts of input R, G, and B
// mixed in to the output R, G and B.

float[] weights = {
 0.6, 0.3, 0.1,
 0.0, 0.0, 1.0,
 0.9, 0.0, 0.1 };

color processColour(color c)
{
 float r = red(c);
 float g = green(c);
 float b = blue(c);

 return color(
 weights[0]*r + weights[1]*g + weights[2]*b,
 weights[3]*r + weights[4]*g + weights[5]*b,
 weights[6]*r + weights[7]*g + weights[8]*b);
}

http://en.wikipedia.org/wiki/Vignetting

d
Combining images

Some operations involve combining two or more
images (say, all of the same resolution) into a single
result. These sorts of image operations can easily be
seen in the form of the Layer Blend Modes in
Photoshop—each mode is a way to combine a layer
with the layer underneath it.

It isn’t too hard to, say, multiply the contents of two
images together pixel-by-pixel by walking over the
two arrays in sync. But let’s skip the question of how
to code that ourselves from scratch, and note that
Processing has a lot of these operations built in: have
a look at the blend() method of PImage.

d
Neighbourhoods of pixels

A final class of operations I’ll mention are the ones in
which the value of every pixel in the result image
depends on a neighbourhood of pixels in the initial
image. A classic example is blurring: every pixel in the
result is a weighted average of that pixel with its
neighbours out to some distance. Conceptually, this
isn’t too much harder to implement in code than the
other transformations we’ve seen so far. But there are
annoying cases that require a fair amount of
additional coding. Most obviously, these algorithms
often try to read pixels from off the edge of the
image. We need a “policy” for what to do in such
cases. There’s no right answer, but a few standard
options. We can assume all off-image pixels are black,
or that they’re copies of the pixels at the edge of the
image, or that the image wraps around, etc.

Blurring is an important enough operation that it’s
also built in to Processing. PImage supports a
filter() method that can apply one of a few
different useful image processing filters, the most
important of which is almost certainly Gaussian Blur.

As with other functions we’ve seen dealing with pixels,
the methods inside of PImage are mostly also
available at the global level, in which case they
operate directly on the sketch window itself. This can
be used to produce some interesting visual effects,
like a ghostly tail that follows the mouse.

d
Working with the camera

One of the first things that attracted me to Processing
was how easy it was to access my laptop’s webcam
and process the images that it was reading from the
outside world. The camera plugs in naturally to the
rest of Processing through the video library. You
create an instance of the Capture class to obtain
frames from the camera. If the camera tells you that a
new frame is available (via the available() method)
then you can ask it to download the next frame (via
the read() method). Alternatively, you can write a
captureEvent() function, which the library will call
when a new camera frame is available. Either way, at
that point the camera behaves just like any other
PImage. The simplest demonstration of using the
webcam is a “virtual mirror”. Note that you have to flip

Example sketch: ManualBlur

Example sketch: FilterBlur

Example sketch: CRTMouse

the camera’s image horizontally or it’s very hard to
interact with your image!

At this point, we can combine a virtual mirror with
many of the other effects we looked at in this module
already, for example halftoning.

Example sketch: Mirror

Example sketch: HalftoningMirror

